Search results for: hemp fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 207

Search results for: hemp fibers

207 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds

Authors: N. Stevulova, I. Schwarzova

Abstract:

The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.

Keywords: Hemp hurds, chemical modification, lightweight composites, testing material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
206 Optimization of Hemp Fiber Reinforced Concrete for Mix Design Method

Authors: Zoe Chang, Max Williams, Gautham Das

Abstract:

The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. HF were obtained from the manufacturer and hand processed to ensure uniformity in width and length. The fibers were added to concrete as both wet and dry mix to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed that the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375 indicating a variation in the mixing process. While completing the dry mix, the addition of plain HF caused them to intertwine creating lumps and inconsistency. However, during the wet mixing process, combining water and HF before incorporation allows the fibers to uniformly disperse within the mix hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes however more research surrounding its characteristics needs to be conducted.

Keywords: hemp fibers, hemp reinforced concrete, wet and dry, freeze thaw testing, compressive strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
205 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials

Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin

Abstract:

Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.

Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
204 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
203 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
202 Study of the Green Composite Jute/Epoxy

Authors: A. Mir, C. Aribi, B. Bezzazi

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio-deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards that become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loadings. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi-static mechanical behavior of the laminate jute/epoxy.

Keywords: Jute, epoxy resin, mechanical, static, dynamic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
201 Conversion of Modified Commercial Polyacrylonitrile Fibers to Carbon Fibers

Authors: R. Eslami Farsani, A. Shokuhfar, A. Sedghi

Abstract:

Carbon fibers are fabricated from different materials, such as special polyacrylonitrile (PAN) fibers, rayon fibers and pitch. Among these three groups of materials, PAN fibers are the most widely used precursor for the manufacture of carbon fibers. The process of fabrication carbon fibers from special PAN fibers includes two steps; oxidative stabilization at low temperature and carbonization at high temperatures in an inert atmosphere. Due to the high price of raw materials (special PAN fibers), carbon fibers are still expensive. In the present work the main goal is making carbon fibers from low price commercial PAN fibers with modified chemical compositions. The results show that in case of conducting completes stabilization process, it is possible to produce carbon fibers with desirable tensile strength from this type of PAN fibers. To this matter, thermal characteristics of commercial PAN fibers were investigated and based upon the obtained results, with some changes in conventional procedure of stabilization in terms of temperature and time variables; the desirable conditions of complete stabilization is achieved.

Keywords: Modified Commercial PAN Fibers, Stabilization, Carbonization, Carbon Fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
200 Acoustic Absorption of Hemp Walls with Ground Granulated Blast Slag

Authors: Oliver Kinnane, Aidan Reilly, John Grimes, Sara Pavia, Rosanne Walker

Abstract:

Unwanted sound reflection can create acoustic discomfort and lead to problems of speech comprehensibility. Contemporary building techniques enable highly finished internal walls resulting in sound reflective surfaces. In contrast, sustainable construction materials using natural and vegetal materials, are often more porous and absorptive. Hemp shiv is used as an aggregate and when mixed with lime binder creates a low-embodied-energy concrete. Cement replacements such as ground granulated blast slag (GGBS), a byproduct of other industrial processes, are viewed as more sustainable alternatives to high-embodied-energy cement. Hemp concretes exhibit good hygrothermal performance. This has focused much research attention on them as natural and sustainable low-energy alternatives to standard concretes. A less explored benefit is the acoustic absorption capability of hemp-based concretes. This work investigates hemp-lime-GGBS concrete specifically, and shows that it exhibits high levels of sound absorption.

Keywords: Hemp, hempcrete, acoustic absorption, GGBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
199 FT-IR Study of Stabilized PAN Fibers for Fabrication of Carbon Fibers

Authors: R. Eslami Farsani, S. Raissi, A. Shokuhfar, A. Sedghi

Abstract:

In this investigation, types of commercial and special polyacrylonitrile (PAN) fibers contain sodium 2-methyl-2- acrylamidopropane sulfonate (SAMPS) and itaconic acid (IA) comonomers were studied by fourier transform infrared (FT-IR) spectroscopy. The study of FT-IR spectra of PAN fibers samples with different comonomers shows that during stabilization of PAN fibers, the peaks related to C≡N bonds and CH2 are reduced sharply. These reductions are related to cyclization of nitrile groups and stabilization procedure. This reduction in PAN fibers contain IA comonomer is very intense in comparison with PAN fibers contain SAMPS comonomer. This fact indicates the cycling and stabilization for sample contain IA comonomer have been conducted more completely. Therefore the carbon fibers produced from this material have higher tensile strength due to suitable stabilization.

Keywords: PAN Fibers, Stabilization, Carbon Fibers, FT-IR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5992
198 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts

Authors: Sarka Keprdova, Jiri Bydzovsky

Abstract:

This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.

Keywords: Ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
197 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
196 Development of Thermal Insulation Materials Based On Silicate Using Non-Traditional Binders and Fillers

Authors: J. Hroudova, J. Zach, L. Vodova

Abstract:

When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties.

The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.

Keywords: Insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
195 Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Authors: R. Eslami Farsani, R. Fazaeli

Abstract:

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.

Keywords: Polyacrylonitrile Fibers, Carbon Fibers, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4795
194 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concreteincreased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: Concrete, compressive strength, fibers, flexural strength, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11394
193 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites

Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties to replace inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile and flexural behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was treated by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidences that a good adhesion interfacial between fibers-matrix caused an increase strength and modulus flexural as well as tensile strength in the modified fibers/HDPE composites when compared to the pure HDPE and untreated fibers reinforced composites.

Keywords: Mechanical properties, palm fibers, polymer composites, surface treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
192 Dimensional Variations of Cement Matrices in the Presence of Metal Fibers

Authors: Fatima Setti, Ezziane Karim, Setti Bakhti, Negadi Kheira

Abstract:

The objective of this study is to present and to analyze the feasibility of using steel fibers as reinforcement in the cementations matrix to minimize the effect of free shrinkage which is a major cause of cracks that have can observe on concrete structures, also to improve the mechanical resistances of this concrete reinforced. The experimental study was performed on specimens with geometric characteristics adapted to the testing. The tests of shrinkage apply on prismatic specimens, equipped with rods fixed to the ends with different dosages of fibers, it should be noted that the fibers used are hooked end of 50mm length and 67 slenderness. The results show that the compressive strength and flexural strength increases as the degree of incorporation of fibbers increases. And the shrinkage deformations are generally less important for fibers-reinforced concrete to those appearing in the concrete without fibers.

Keywords: Concrete, Steel fibers, Compression, Flexural, Deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
191 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
190 Effect of Nanofibers on the Behavior of Cement Mortar and Concrete

Authors: Mostafa Osman, Ata El-kareim Shoeib

Abstract:

The main objective of this paper is study the influence of carbon nano-tubes fibers and nano silica fibers on the characteristic compressive strength and flexural strength on concrete and cement mortar. Twelve tested specimens were tested with square section its dimensions (4040 160) mm, divided into four groups. The first and second group studied the effect of carbon nano-tubes (CNTs) fibers with different percentage equal to 0.0, 0.11%, 0.22%, and 0.33% by weight of cement and effect of nano-silica (nS) fibers with different percentages equal to 0.0, 1.0%, 2.0%, and 3.0% by weight of cement on the cement mortar. The third and fourth groups studied the effect of CNTs fiber with different percentage equal to 0.0%, 0.11%, and 0.22% by weight of cement, and effect of nS fibers with different percentages were equal to 0.0%, 1.0%, and 2.0% by weight of cement on the concrete. The compressive strength and flexural strength at 7, 28, and 90 days is determined. From analysis of tested results concluded that the nano-fibers is more effective when used with cement mortar more than used with concrete because of increasing the surface area, decreasing the pore and the collection of nano-fibers. And also by adding nano-fibers the improvement of flexural strength of concrete and cement mortar is more than improvement of compressive strength.

Keywords: Carbon nano-tubes fibers, nano-silica (nS) fibers, compressive strength, flexural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
189 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
188 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams

Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar

Abstract:

An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.

Keywords: Basalt fiber, steel fiber, reinforced concrete beams, flexural behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
187 Fibers Presence Effects on Air Flow of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Different designs of attenuator systems have been studied in this research; new analysis have been done on existed designs considering fibers effect on air flow; it was comprehended that, at fibers presence, there is an air flow which agglomerates fibers as a negative effect. So some new representations have been designed and CFD analysis has been done on them. Afterwards, one of these representations selected as the most optimum and effective design which is brought in this paper.

Keywords: Attenuator, CFD, nanofiber, spun-bond.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
186 The Use of Plant-Based Natural Fibers in Reinforced Cement Composites

Authors: N. AlShaya, R. Alhomidan, S. Alromizan, W. Labib

Abstract:

Plant-based natural fibers are used more increasingly in construction materials. It is done to reduce the pressure on the built environment, which has been increased dramatically due to the increases world population and their needs. Plant-based natural fibers are abundant in many countries. Despite the low-cost of such environmental friendly renewable material, it has the ability to enhance the mechanical properties of construction materials. This paper presents an extensive discussion on the use of plant-based natural fibers as reinforcement for cement-based composites, with a particular emphasis upon fiber types; fiber characteristics, and fiber-cement composites performance. It also covers a thorough overview on the main factors, affecting the properties of plant-based natural fiber cement composite in it fresh and hardened state. The feasibility of using plant-based natural fibers in producing various construction materials; such as, mud bricks and blocks is investigated. In addition, other applications of using such fibers as internal curing agents as well as durability enhancer are also discussed. Finally, recommendation for possible future work in this area is presented.

Keywords: Cement composites, plant fibers, strength, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
185 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3408
184 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: Characterization, chips fibers, cracking mode, ductility, undulation, shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
183 A Constitutive Model of Ligaments and Tendons Accounting for Fiber-Matrix Interaction

Authors: Ratchada Sopakayang, Gerhard A. Holzapfel

Abstract:

In this study, a new constitutive model is developed to describe the hyperelastic behavior of collagenous tissues with a parallel arrangement of collagen fibers such as ligaments and tendons. The model is formulated using a continuum approach incorporating the structural changes of the main tissue components: collagen fibers, proteoglycan-rich matrix and fiber-matrix interaction. The mechanical contribution of the interaction between the fibers and the matrix is simply expressed by a coupling term. The structural change of the collagen fibers is incorporated in the constitutive model to describe the activation of the fibers under tissue straining. Finally, the constitutive model can easily describe the stress-stretch nonlinearity which occurs when a ligament/tendon is axially stretched. This study shows that the interaction between the fibers and the matrix contributes to the mechanical tissue response. Therefore, the model may lead to a better understanding of the physiological mechanisms of ligaments and tendons under axial loading.

Keywords: Hyperelasticity, constitutive model, fiber-matrix interaction, ligament, tendon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
182 Preparation and Characterization of Nylon 6-Clay Hybrid/Neat Nylon 6 Bicomponent Nanocomposite Fibers

Authors: Shahin Kazemi, Mohammad Reza Mohaddes Mojtahedi, Ruhollah Semnani Rahbar, Wataru Takarada, Takeshi Kikutani

Abstract:

Nylon 6-clay hybrid/neat nylon 6, sheath/core bicomponent nanocomposite fibers containing 4 wt% of clay in sheath section were melt spun at different take-up speeds. Their orientation and crystalline structure were compared to those of neat nylon 6 fibers. Birefringence measurements showed that the orientation development in sheath and core parts of bicomponent fibers was different. Crystallinity results showed that clay did not act as a nucleating agent for bicomponent fibers. The neat nylon 6 fiber had a smooth surface while striped pattern was appeared on the surface of bicomponent fiber containing clay due to thermal shrinkage of the core part.

Keywords: Bicomponent fiber, High speed melt spinning, Nylon 6-clay hybrid, Nylon 6.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
181 Use of Natural Fibers in Landfill Leachate Treatment

Authors: J. F. Marina Araujo, F. Marcus Vinicius Araujo, R. Daniella Mulinari

Abstract:

Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment.In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber.These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale.In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%.The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.

Keywords: Landfill leachate, chemical treatment, natural Fibers, advanced oxidation processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
180 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: Flexural properties, glutarylation, glutaric anhydride, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
179 Bridging Stress Modeling of Composite Materials Reinforced by Fibers Using Discrete Element Method

Authors: Chong Wang, Kellem M. Soares, Luis E. Kosteski

Abstract:

The problem of toughening in brittle materials reinforced by fibers is complex, involving all of the mechanical properties of fibers, matrix and the fiber/matrix interface, as well as the geometry of the fiber. Development of new numerical methods appropriate to toughening simulation and analysis is necessary. In this work, we have performed simulations and analysis of toughening in brittle matrix reinforced by randomly distributed fibers by means of the discrete elements method. At first, we put forward a mechanical model of toughening contributed by random fibers. Then with a numerical program, we investigated the stress, damage and bridging force in the composite material when a crack appeared in the brittle matrix. From the results obtained, we conclude that: (i) fibers of high strength and low elasticity modulus are beneficial to toughening; (ii) fibers of relatively high elastic modulus compared to the matrix may result in substantial matrix damage due to spalling effect; (iii) employment of high-strength synthetic fibers is a good option for toughening. We expect that the combination of the discrete element method (DEM) with the finite element method (FEM) can increase the versatility and efficiency of the software developed. The present work can guide the design of ceramic composites of high performance through the optimization of the parameters.

Keywords: Bridging stress, discrete element method, fiber reinforced composites, toughening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
178 Survey on Nano-fibers from Acetobacter Xylinum

Authors: A. Ashjaran, M. E. Yazdanshenas, A. Rashidi, R. Khajavi, A. Rezaee

Abstract:

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Keywords: Microbial cellulose, Biofabric, Microorganisms Acetobacter xylinum, Polysaccharide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641