

Abstract—Distance visualization of large datasets often takes the

direction of remote viewing and zooming techniques of stored static
images. However, the continuous increase in the size of datasets and
visualization operation causes insufficient performance with
traditional desktop computers. Additionally, the visualization
techniques such as Isosurface depend on the available resources of
the running machine and the size of datasets. Moreover, the
continuous demand for powerful computing powers and continuous
increase in the size of datasets results an urgent need for a grid
computing infrastructure. However, some issues arise in current grid
such as resources availability at the client machines which are not
sufficient enough to process large datasets. On top of that, different
output devices and different network bandwidth between the
visualization pipeline components often result output suitable for one
machine and not suitable for another. In this paper we investigate
how the grid services could be used to support remote visualization
of large datasets and to break the constraint of physical co-location of
the resources by applying the grid computing technologies. We show
our grid enabled architecture to visualize large medical datasets
(circa 5 million polygons) for remote interactive visualization on
modest resources clients.

Keywords—Visualization, Grid computing, Medical datasets,
visualization techniques, thin clients, Globus toolkit, VTK.

Manuscript received October 30, 2007. This research is supported by the

Ministry of Science, Technology and Innovation Malaysia and collaboration
with Research Management Centre, Universiti Teknologi Malaysia.

Aboamama Atahar Ahmed is a PhD candidate at department of computer
systems and communications, faculty of computer science and information
technology,Universiti Teknologi Malaysia, 81310 UTM Skudai Malaysia
(phone: (607)-555536503; fax: (607)-5565044; e-mail: atahar74@gmail.com).

Muhammad Shafie Abd Latiff PhD Bradford University, United Kingdom
he is now a lecturer and head of computer system & communication
department, faculty of computer science and information technology,
Universiti Teknologi Malaysia, 81310 UTM Skudai Malaysia (phone: (607)-
5532006; fax: (607)-5565044 ;e-mail: shafie@utm.my).

Kamalrulnizam bin Abu Bakar PhD Aston University, United Kingdom he
is now Lecturer at department of computer systems and communications,
faculty of computer science and information technology, Universiti Teknologi
Malaysia, 81310 UTM Skudai Malaysia (phone: (607)-5532382; fax: (607)-
5565044; e-mail: knizam@utm.my).

Zainul Ahmad Rajion is a medical doctor at School of dental sciences,
health campus Universiti Sains Malaysia 16150 Kubang Kerian, Kelantan,
Malaysia (phone: +609 766 3764; e-mail: zainul@kck.usm.my).

I. INTRODUCTION
CIENTIFIC Visualization is a process of transforming a
numerical datasets into pictorial format understandable by

human. This datasets is normally very large in size and
algorithmically complex. Therefore, processing this datasets
with conventional desktop computer is not sufficient, where
the machine will be overwhelmed with intensive processing of
large datasets even with the latest development of
visualization techniques. Distance visualization concerns
providing remote users with access and utilization of remote
powerful resources located at the remote location. However,
real time visualization requires on demand or real time access
to the remotely available resources. Additionally, the
resources generally are not reliable in nature and distributed
on different networks. This unreliable distribution of
resources on different networks leads to output suitable for
one device and not suitable for another. On the other hand,
scientific visualization demands availability of powerful
resources such as powerful graphics adapters and large
memory and most often extended storage devices. Moreover,
designing a visualization to run on single machine always
results in specialist high cost super computers. These high-end
powerful resources always need to be located in a secure
location with limited access privileges. There are several
techniques introduced to provide flexible methods for remote
visualization. Unfortunately, these techniques are always
based on client server paradigm where there is powerful
computational resources do the visualization tasks at the
backend. Other techniques are based on clustering methods by
building a cluster of nodes to carry out the computational load
[1], [2], [3], [4]. Unlike clusters, grid methods are designed to
deal with unreliable resources where the cluster is a group of
similar resources attached together to build extra
computational power. Grid computing [5] is a term used to
describe the process of sharing geographically distributed
resources. This distributed computing infrastructure allows
the sharing of processing power, memory, storage and high
performance graphics in heterogeneous environment. We
utilize grid technologies to provide transparent access to
remotely located resources and implement isosurfacing
algorithm architecture on grid environment. This paper

Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, and Zainul Ahmad
Rajion

Automatic Visualization Pipeline Formation for
Medical Datasets on Grid Computing

Environment

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2013International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

investigates the integration of grid services with scientific
visualization and we support our findings with practical
implementation of grid enabled remote visualization prototype
for large medical datasets. We give an overview of our grid
visualization architecture and describe our implementation
and the results obtained. Our initial results show the
performance of rendering large datasets located remotely.

II. PREVIOUS WORK

The scientific data visualization was sparked by landmark
NSF report ‘Visualization in Scientific Computing’ by
McCormick [6]. The introduced visualization concept was
based on breaking down the dataflow of the visualization
process to smaller distributed processes. The smaller
processes can be placed on distributed locations which are
interconnected by network to form a modular visualization.
Each part can contribute as an independent modular to form
the overall visualization process. However, the existing grid
enabled visualization systems are in the direction of
translating the existing dataflow concept presented by Haber
and McNabb [7] as described in Fig. 1.

Fig. 1 Haber-McNabb Visualization Pipeline

The existing visualization systems such as AVS Express

[8], VTK [9], IBM Data Explorer, OpenGL VizServer [10]
and IRIS Explorer [11] are generally available today and used
to visualize a variety of large volume of data including
medical data for a single powerful machine. Some projects are
in a direction to extend the capabilities of these visualization
systems. For instance gViz project was designed to extend
IRIS Explorer. However, the possible integration in grid
environment should be based on the design of internal
components of these systems. Therefore, the challenge now is
in providing a flexible and effective architecture to support
remote access to the resources. Current implementations of
grid enabled visualization are often tied to expensive hardware
and powerful graphic support. The following are some of Grid
enabled visualization applications and projects.

RAVE [12] is a grid enabled visualization system that
reacts and responds to available heterogeneous resources.
RAVE implements techniques to make use of both remote and
local resource according to the participating machines from
high capabilities machines to Small PDA’s.

The gViz project [13] it incorporate the grid in the internal
components of the IRIS Explorer [11].

The E-Demand [14] is a grid application which focuses on
the use of Grid services to support stereoscopic visualization
in a distributed environment. The E-demand application
considered as PSE “problem solving environment” on the
grid. OGSA [5] presents each model as an entity. Multi

rendering services can be deployed to form a collaborative
environment.

The SuperVise [15] is another grid implementation. In
SuperVise Project, the phases of visualization pipeline such as
filtering and geometry transformation are distributed across
the grid. The user selects the data then the SuperVise selects
the appropriate resources and form the visualization pipeline.

The Distributed Visualization System [16] is visualization
application that uses frameless buffer for rendering to
distribute the pixel images between several machines. Each
machine receives subset of the pixels to render it and submit
the rendered part to create the full image, but each machine
must have the original copy of the full image.

 Some other visualization applications do not relay totally
on software in their implementations for instance Visapult [1]
is a visualization framework with the ability to render a huge
amount of datasets (of the order of 1-5 Tb). Visapult uses
parallel rendering hardware to carry out the high speed
rendering processes. Using Cactus [17] the data are distributed
amongst many parallel nodes for volume rendering, the
rendered subset 2D image sent to the client for local
rendering.

Engel_vis [18] is another application that combines Local
and Remote Visualization Techniques for Interactive volume
rendering in medical applications. The application was
implemented using java, java 2D and java 3D based on the
client which communicate with a server implemented in C++
and OpenInventor. There are some other implementations of
grid methods on visualization, such as stated in [19] the
implementation was focused on developing a rendering
pipeline and this implementation also utilizes Globus toolkits
for interconnecting the pipeline components with support of
Chromium technology for distributed rendering. Other recent
implementation as mentioned in [20] where they describe the
integration of VTK with Globus to have parallel graphics
rendering pipeline on grid environment. However, the
mentioned grid enabled visualization applications are well
structured and designed to solve specific problem. Some of
the applications provide the participating machines with no
ability to do the rendering processes such as COVISE. Others
assume that the participating machines support the rendering
resources such as OpenGL VizServer. 1 Despite the fact that
Isosurface rendering is one of the most important issues in
remote or distributed visualization, therefore our technical
implementation shows the actual results of performing
Isosurface on medical datasets located remotely and displays
the results on modest resources machine. These findings are
described with real implementation of grid computing
environment particularly with Globus toolkit to provide
transparent access to the available resources. Additionally we
have added some functionality as small embedded Java
programs for the resources discovery to suite our architecture.
On other hand we have utilized VTK (Visualization Toolkit)
to provide the necessary visualization techniques particularly
Isosurface algorithm and decimation algorithm.

Filter Data Map Render

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2014International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

III. A FRAMEWORK FOR VOLUMETRIC VISUALIZATION ON THE
GRID ENVIRONMENT

Fig. 2 Automatic formation of Visualization Pipeline on the grid

A. Grid Services

Fig. 2 shows the automatic formation of the visualization pipeline.
We used Globus [23] to host our grid services despite the
known difficulties in the Globus configuration specifically for
real time visualization operations. Our architecture utilizes
very important Globus components such as Globus MDS and
GRAM to discover the resources available on the grid pool
and to be able to send and receive data between the
components of the visualization pipeline. However, adjusting
the visualization pipeline is very difficult task specially when
dealing with a very large datasets on one hand. This is
normally due to unreliable nature of the resources on the grid
and one would not know which resources suitable for which
job. On the other hand, a visualization operation such as
Isosurface demands more computational power and most
cases conventional computer not capable of providing this
power. From the above facts we have decided to use MDS and
embed our java algorithm to collect information from MDS
which also utilizes Ganglia to get detailed information about
the nodes automatically using external resources property
providers. The issue now is how to map our visualization
tasks to these discovered resources. This is where our java
algorithm comes to work.

Fig. 3 shows grid Map Function

B. VTK and Globus Grid Services Integration
Fig. 3 shows the integration of Globus and VTK to form the

visualization pipeline MDS finds the available resources and
GRAM services direct the requests between the pipeline
components in a form of RSL script. However, the
architecture should have Globus installed on each node except
for the display clients. The display clients should have COG
Kit installed to allow the RSL script to map the GRAM jobs to
other grid nodes. In addition to Globus installation, we
separately implemented the installation of VTK modules on
each node. That is by breaking out the visualization operations
into small subtasks to be run as network connected modules.
This way we achieved the distribution of workload between
the grid nodes and avoid the visualization operations to
overwhelm one single machine. For the display client, we
must have VTK java packages as a jar file to give a flexible
implementation and interaction features to allow real-time
interaction with the scene. With these backend architecture
components VTK and Globus, we only need to promote our
services as grid services with WSDL and to discover these
services as the visualization requirements. From the display
client, the user will need to perform the grid mapping task as a
mouse click to map the jobs to suitable resources which
resulted based on MDS queries. Unlike other grid applications
where the implementation of grid resources discovery use
manual selection of resources, the resources discovery in our
architecture is done in automatic way and the users are not
required to have detailed knowledge of the grid nodes and the
users will not worry about manual mapping and selection for
resources.

Fig. 4 Redraw process requests of an Isosurface

C. Grid Visualization Pipeline Architecture

Our grid visualization pipeline architecture is divided into
several stages as follow Reader, Iso-surface extractor,
Mapper, renderer and Display.

1. Data Reader
Data reader was designed to read different type of datasets,

such as ASCII binary files or raw datasets format. The reader
is selected according to specified datasets and the data reader
is able to read data from more than one location and append
the data to one or more Iso-surface extractor. The datasets

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2015International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

size is calculated at this stage.

2. Isosurface extractor
For extracting 3D grid from the datasets, we used The

Marching Cubes algorithm [21]. We have chosen this
particular algorithm for geometry generation for several
reasons. Firstly, modeling the dynamic changes of the
visualization operations on the grid is a great challenge.
However, for our Isosurface algorithm case, different Isovalue
with the same datasets produces different number of generated
polygons. Additionally, different quantities of polygons
produced by the same Isovalue even with the same datasets
with different time step. Therefore the quantity of generated
polygons causes different performance of the entire extraction
process and over all the performance of the pipeline.
Secondly, this scenario is providing dynamic changes in the
environment where the load is not fixed throughout the
distributed visualization pipeline. The visualization
requirements (datasets location and Isosurface value) passed
from the user located at remote location to the starting server
of the pipeline. Then, the pipeline is formed according to
selected dataset attributes and number of generated polygons.
Fig. 4 shows the initial Isosurface drawing requests contain
datasets address location and Isovalue. These parameters are
passed to the starting pipeline server. The source of the
datasets can be from static file or life feed from external
programs. After reading and calculating the datasets size the
server serialize the datasets to the assigned to one or two
Isosurface extractor according to datasets size and the capacity
of the extracting machine. The Isosurface extractor then
deserializes the data and appends the datasets with
vtkappendFilter implemented as grid service used to append
datasets from several data extracting instances. After
extracting the polygons from the datasets the extractor then
serialize the resulted datasets to mapping service.

3. Data Mapper
Mapping service is responsible for taking datasets produced

by Isosurface extractor and deserializes the data and maps it to
one or more rendering service. Mapping and Isosurface
extraction may be implemented as a single service. The
resulted datasets serialized to the rendering service. The
importance of mapping is to allow the discovery of grid
available resources by querying the Globus MDS. The result
of the query is used to assign the proper rendering nodes. The
mapping service is also responsible for partitioning the
resulted geometric datasets.

4. Renderer
Rendering is a process of transforming the geometric data

into images. The rendering process is known to consume the
available resources memory and storage. This particular
problem is common for standard desktop computers where the
rendering of large geometric datasets consumes CPU and
available memory. For these reasons, our technique uses
rendering services in the form of grid services. Each rendering

services is registered in UDDI server and advertises itself to
other services. The Globus MDS is used to discover the
rendering resources in the grid. Then the render receives the
assigned chunk of the datasets.

IV. GRID VISUALIZATION PIPELINE FEATURES
This section describes the gird visualization features and the

advantages of spreading the visualization pipeline on the grid.

A. Heterogeneous Support
The implementation of our pipeline as grid services allows

different hardware and different operating systems to
communicate and exchange the data without worrying about
underlying configuration. As an example, for our testbed, we
have three machines two with Linux RedHat 9 and one with
fedora core 3 implemented as data reader, Isosurface extractor
and data Mapper respectively which are able to communicate
with Windows XP.

2. Efficient Resources Utilization
The technique of distributing the visualization operations

offers chance to other users to utilize the resources where the
workload is divided to several machines, unlike other grid
enabled visualization systems such as stated in [13] in their
implementation the visualization operations take over the
memory of the entire used machine and the user will have to
wait for the operations to complete. Resources utilization is an
important concept in the grid concept. In our architecture, we
implemented resources utilization in two main points. The
first point is to divide the visualization task as connected
pipeline that helped us in distributing the load and avoid our
machines to be overwhelmed with several operations in one
node. The second point is in our implementation of automatic
discovery of resources. Where we first discover the proper
resources and we make best use of them.

3. Automatic Resource Discovery
Our resources discovery mechanism starts from the display

client node as the user executes the grid mapping task
provided in GUI. The MDS then query the resources available
in the grid and registers the resources in the system. The
resulted of the query is information of current load of each
node and the memory, storage and CPU. For that purpose we
wrote java client program as grid mapping function for
resources selection which is done by comparing our calculated
datasets size and the power of the available nodes.

V. TESTBED IMPLEMENTATION
The resources we used for testbed implementation include 2

HP workstations equipped with NVidia GeForce 4MX Go
graphics, 512 MB of RAM and 2.87 GHz CPU running on
Linux RedHat 9, and one with NVidia nv10 GeForce 256
SDR graphics card , 256 MB of RAM running Linux Fedora
core 3. At the client user, we used HP Notebook equipped
with Intel(R)Pentium(R)4 CPU 2.80GH, Graphic Adapter ATI
Mobility IGP 340M/345M , 512 MB of RAM and ST94011A

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2016International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

40 GB disk drives running on windows XP Professional. All
the machines were linked with LAN cable 100MB Ethernet
LAN. During the implementation there was extra demand for
memory during the rendering process.

VI. EXPERIMENTAL RESULTS
For our initial results, we used test models (CT scan of

facial bone) in raw format that were obtained from Hospital
Universiti Sains Malaysia and second model was the UNC
head dataset converted to ASCII VTK Binary format was
taken from public datasets archive Table I shows the models
used in our experiment.

TABLE I

MODELS USED IN BENCHMARKS

(a)

(b)

Fig. 5 (a) Isosurface with Isovalue of 1200 (b) Isosurface with
Isovalue of 600

The raw skeleton consists of 121 slices of 256*256 * 256
producing file size 15.1MB as reported in the table. The
datasets were processed by marching cubes and a polygon
decimation algorithm. The two models are shown in the
screenshots from the visualization client in Fig. 5. The used
algorithms in our architecture are vtkmarchingcubes to extract
the Isosurface and vtkDecimatePro to reduce the number of
produced polygons from the first step. (Fig. 5 A) shows
Isosurface of 15.1 MB datasets at client with Isovalue 1200.
(Fig. 5 B) shows the Isovalue 600. And it is enough for skin
surface for this particular datasets. To analyze and exchange
our datasets via the pipeline, we used VTK at each node of the

pipeline installed along with GT4. In our architecture, the
implemented VTK java classes imports GT4 packages for
easy programs integration. WSDL are used to advertise our
services, such as render services. Our implementation is not
restricted to particular platform. Our visualization pipeline
components are distributed and advertized as grid services
then published by UDDI server. Users only need to query the
MDS for available services. However, for our initial
implementation for resources discovery we utilize MDS
included with GT4 installation. From the users perspective
this underlying configuration is hidden. The only task for
client user is to press on map grid function to query the
resources available and map the required visualization
operation to the proper available resources.

VII. PIPELINE PERFORMANCE

Fig. 6 The pipeline performance

Fig. 6 shows the pipeline performance where we have

complete installation of Ganglia [24] for distributed
monitoring system on one client machine which connects to
other nodes on the grid using Ganglia Monitoring Daemon
and Ganglia Meta Daemon. The reason for choosing Ganglia
for pipeline monitoring is that it has a good support for
Globus and produces accurate measurement output for
unreliable resources and provided flexibility in heterogeneous
environment. These conditions are provided in grid computing
environment. We support the performance Measurement for
the pipeline with analytical approach as described by [25]
where the overall pipeline performance is calculated by
calculating individual machines. The reason for choosing this
method is that, in order to have accurate performance
modeling for sequential pipeline as in our case the
performance of an Isosurface algorithm, we notice that
different numbers of polygons and points with different
Isovalue even with the same datasets. Therefore, the number
of produced polygons results in radically different
performance characteristics for the entire pipeline execution.
In our experiment we showed better interactivity
performance of Isosurface of 15.1 MB datasets located at our
(Skudai.fsksm.utm.my) starting pipeline node for reading then
datasets passed to Isosurface extraction node

Model Name Number of Polygons Size of Data File
Skeleton head 4.28 million 15.1MB
3D full head 11.17 million 23.1MB

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2017International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

(Mewah.fsksm.utm.my) and then passed to rendering service
at (Kulai.fsksm.utm.my) then to client display
(HP_Mobile.fsksm.ut.my) notebook. Although measuring the
performance in unreliable grid environment is not
straightforward task, particularly where the start of the
pipeline should always in contact with display client through
out the pipeline execution. Therefore, in this specific
implementation we utilized the components of VTK sending
and receiving java rmi triggers in real time with support of
update extent compiled classes in VTK distribution.

VIII. RESOURCES MAPPING AND DISCOVERY
The grid mapping is used to map the resources. Our current

implementation of mapping is done by using RSL script as
GRAM implementation of GT4. The user only need to specify
the starting node of the pipeline and the location of the
datasets that he or she needs to visualize and the isosurface
value required for visualization. The rest of the operation will
be done automatically without having the user worry about
extra configuration. The embedded java algorithm for
resources mapping is responsible for pipeline formation at
very initial stage by requesting the available resources as
MDS queries and receiving the size of the datasets from VTK
data reader then the users will have to implement grid map
Function task after specifying the above parameters.

IX. CONCLUSION AND FUTURE WORKS
 We presented our implementation of grid enabled remote

visualization architecture. We gave a brief description of our
technical implementation and showed the possible integration
of grid services and valuable support for scientific
visualization particularly on medical datasets. We
decomposed the visualization pipeline in distributed machines
and developed our visualization services as grid services
registered and published to public UDDI server. We show the
usefulness of distributing the workload between several
machines and how to utilize the Globus GRAM services to
automatically launch the pipeline. Our next aim is to
distribute the rendering process. Specifically, we are
interested in applying parallel algorithms for this
implementation. We were able to interactively visualize large
number of polygons circa 9 million polygons at the client with
java installed on modest resources machine.

REFERENCES
[1] Bethel .W, Tierney. Brian, Lee. J, Gunter .D, Lau S (2000): Visapult

Using High-Speed WANs and Network Data Caches to Enable Remote
and Distributed Visualization, 2000 IEEE.

[2] Xiaoyu Zhang, Chandrajit Bajaj, William Blanke : 2001 Scalable
Isosurface Visualization of Massive Datasets on COTS Clusters :
Proceedings of the IEEE 2001 symposium on parallel and large-data
visualization and graphics.

[3] Engel K Sommer .O, Ernst C, Ertl T. (2000): Remote 3D Visualization
using Image- Streaming Techniques. 2000.

[4] Brett Beeson1,2, Mark Dwyer1, David 2005 : Server-side Visualization
of Massive Datasets Thompson3 Proceedings of the First International
Conference on e-Science and Grid Computing (e-Science’05).

[5] Foster, C. Kesselman, Nick .K. M., Tuecke .S (2002): The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Globus, February 2002.

[6] McCormick B. H., DeFanti T. A., Brown M. D. (1987), “Visualization in
Scientific Computing”, Computer Graphics 21 1-14.

[7] Haber, R.B. and McNabb, D.A. 1990. Visualization Idioms: A
Conceptual Model for Scientific Visualization Systems. In:
Visualization in Scientific Computing, Shriver, B., Neilson, G.M., and
Rosenblum, L.J., Eds., IEEE Computer Society Press, 74-93.

[8] Upson, C., Faulhaber, T., Kamins, D., Schlegel, D., Laidlaw, D.,
Vroom, J., Gurwitz, R. and van Dam, A. 1989. The Application
Visualization System: a Computational Environment for Scientific
Visualization, IEEE Computer Graphics and Applications 9, 4, 30- 42.

[9] Will Schroeder, Ken Martin, and Bill Lorensen, The Visualization
Toolkit: An Object-Oriented Approach To 3D Graphics. Second Edition.
Prentice Hall. Upper Saddle River, NJ. 1998.

[10] SGI. SGI OpenGL VizServer 3.1. Data sheet, SGI, March 2003.
[11] Walton, J.P.R.B. (2004). NAG’s IRIS Explorer. In: Visualization

Handbook, Johnson, C.R. and Hansen, C.D., Eds., Academic Press (in
press). Available at http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf

[12] Walker D. W. , Grimstead .I (2004): Resource aware visualization
environment. http://www.wesc.ac.uk/projects/rave/.2004

[13] Wood. J, Brodlie, K., J. Walton. (2003) gViz – visualization and
steering for the grid. In Proceedings of the UK All Hands Meeting 2003,
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/030.pdf.,
http://www.visualization.leeds.ac.uk/gViz.

[14] Charters, S., Holliman, N.S. and Munro, M. 2003. Visualization in e-
Demand: Grid Service Architecture for Stereoscopic Visualization,
Proceedings of UK e-Science Second All Hands Meeting.

[15] Osborne .J, Wright .H, (2003) SuperVise: Using Grid Tools to Support
Visualization. In Proceedings of the Fifth International Conference on
Parallel Processing and Applied Mathematics (PPAM 2003).

[16] Mahovsky .J, Benedicenti. L (2003): Architecture for Java-Based Real-
Time Distributed Visualization. IEEE Transactions on Visualization and
Computer Graphics, 9(4):570 – 579, October December 2003.

[17] Allen .G, Benger. W, Goodale. T, Hege H.-C, Lanfermann . G , Merzky .
A, Radke. T , Seidel .E, Shalf .J (2000): The Cactus Code: A Problem
Solving Environment for the Grid. In Proceedings of the Ninth
International Symposium on High Performance Distributed Computing
(HPDC’00), pages 253–262. IEEE, August 2000.

[18] Engel K. et al.. (2000): Combining Local and Remote Visualization
Techniques for Interactive Volume Rendering in Medical Applications.
2000.

[19] Lorensen, William and Harvey E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer Graphics
(SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170)
http://www.cs.duke.edu/education/courses/fall01/cps124/resources/p163
-lorensen.pdf

[20] Ade J. Fewings and Nigel W. John, "Distributed Graphics Pipelines on
the Grid," IEEE Distributed Systems Online, vol. 8, no. 1, 2007, art. no.
0701-o1001.

[21] Dutra, Rodrigues, Giraldi, Schulze, "Distributed Visualization Using
VTK in Grid Environments," ccgrid, pp. 381-388, Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid
'07), 2007.

[22] William J. Schroeder, Jonathan A. Zarge , William E. Lorensen,
Decimation of triangle meshes, ACM SIGGRAPH Computer Graphics,
v.26 n.2, p.65-70, July 1992.

[23] Thomas Sandholm and Jarek Gawor. Globus Toolkit 3 Core - A Grid
Service Container Framework. Globus Toolkit 3 Core White Paper, July
2003.

[24] M. L. Massie, B. N. Chun, and D. E. Culler, The Ganglia Distributed
Monitoring System: Design, Implementation, and Experience, Parallel
Computing, Vol. 30, Issue 7, July, 2004.

[25] Ian Bowman 2004 Performance Modeling for 3D Visualization in a
Heterogeneous Computing Environment: available online
http://vis.lbl.gov/Publications/2004/Bowman-PGV-LBNL-56977.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:7, 2007

2018International Scholarly and Scientific Research & Innovation 1(7) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

7,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

36
6.

pd
f

