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Abstract—Deep reinforcement learning (deep RL) algorithms
leverage the symbolic power of complex controllers by automating
it by mapping sensory inputs to low-level actions. Deep RL
eliminates the complex robot dynamics with minimal engineering.
Deep RL provides high-risk involvement by directly implementing
it in real-world scenarios and also high sensitivity towards
hyperparameters. Tuning of hyperparameters on a pneumatic
quadruped robot becomes very expensive through trial-and-error
learning. This paper presents an automated learning control for a
pneumatic quadruped robot using sample efficient Deep Q learning,
enabling minimal tuning and very few trials to learn the neural
network. Long training hours may degrade the pneumatic cylinder
due to jerk actions originated through stochastic weights. We applied
this method to the pneumatic quadruped robot, which resulted in a
hopping gait. In our process, we eliminated the use of a simulator
and acquired a stable gait. This approach evolves so that the resultant
gait matures more sturdy towards any stochastic changes in the
environment. We further show that our algorithm performed very
well as compared to programmed gait using robot dynamics.

Keywords—Model-based reinforcement learning, gait stability,
supervised learning, pneumatic quadruped.

I. INTRODUCTION

THE mobile robots are usually associated with robots that
consist of wheels to move around. There is a different

category of mobile robots that possess the ability to overcome
many terrains with ease. These are legged robots. These
robots can interact more effectively with the environment.
Quadruped robots possess the characteristic properties that
give them an edge over another similar system. Designing
locomotion controllers for pneumatic quadruped robots [1],
[2] is a critical and long-lasting research task. Previous works
[3], [4] for model-free reinforcement learning (RL) [5], [6]
have shown that without prior knowledge of the dynamics
of the system, still, the algorithm was able to optimize the
target policy of the architecture. Recently, research on the
automation of quadruped robot locomotion has heightened
due to the more sober approach [5], [7]–[10]. State of the
art approach for pneumatic quadruped robots depends on
the stacks of state estimation, contact scheduling, control
system, and dynamics of pneumatic cylinders. Implementing
these pipelines leads to complex design, which incorporates
complex dynamics model of the robot and complex controllers
[11]. This model is challenging to acquire for real hardware.
Many implementations of model-free methods are executed
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through simulated environments that do not lead to achievable
solutions for real-world scenarios, considering training hours
[4], [12]. Our main challenges are threefold. We were first
decreasing the complexity of the quadruped robot resulting
in more stability and more efficiency. The next challenge
was to implement an accurate model-free algorithm that
should result in long-distance locomotion. Our algorithm
prepared an approach that used pre-trained weights using a
supervised Neural network with basic gaits. Without prior
knowledge of the robot’s dynamics, the control algorithm
can be implemented directly using deep RL. The pre-trained
weights can be obtained using standard gait analysis, which
can be opted from a simple walking gait or, in our case, an
unstable crawling gait. Applying deep RL algorithms needs
high samples [5] for learning the gait of each robot, which
results in efficient locomotion. However, a large number of
samples results in long hours of training. Thus, efficient
locomotion with fewer samples was a challenge in our case.
Moreover, these deep RL algorithms are often susceptible to
hyperparameters and need multiple tuning [13]. Consequently,
our approach does not require any hyperparameters tuning,
which includes learning rate and discount factor. Thus, our
policy makes the system more practical to apply deep RL
directly to the real-world scenario. Our algorithm consists
of simple neural networks which do not need too much
computation processing, and limiting the data for learning
results in low computational processing. Fig. 2 illustrates
the end gait after training with our algorithm in the real
world. This policy was developed for a flat surface, but
the robust learning could tackle obstacles that resulted in
vigorous gait. Our approach eliminates many gaits that
the policy tries to learn while training. Thus, limiting it
to the choice of gait we want, the procedure becomes
less complicated and robust for real-world scenarios. In a
simulation-based approach [5], [12], [14], [15], the model
must also adapt to any stochastic noise seen in real-world
scenes. Our training required about 400 episodes, equating
to about two hours for real-world application. Our paper
focuses on a framework that includes a deep Q learning
algorithm with an asynchronous learning system, leading
to data efficiency and sample efficiency for locomotion on
a pneumatic quadruped robot, with a scarce computational
expensive neural network. We demonstrate the framework
by training a pneumatic quadruped robot for hopping gait.
This algorithm also uses an asynchronous learning system,
described in Fig. 5, enabling the deep RL algorithm to be
independent of machine-related factors. Pneumatic quadruped
is generally very unstable while traversing [16]. This algorithm
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Fig. 1 Pneumatic quadruped robot

molded the robot to automatically learn the policy for stable
locomotion even for unseen terrains.

II. RELATED WORK

The current state-of-the-art quadruped robot typically adopts
a pipe-lined complex controller. For example, the MIT Cheetah
uses a state machine over contact conditions, generates simple
reference trajectories, performs model predictive control [12]
for optimizing desired contact forces for individual leg, and
then uses dynamics and controller. The ANYmal robot [15]
plans footholds based on the inverted pendulum model even
our robot is based on the concept of invert pendulum, applies
CMA-ES [17], [18] to optimize a parameterized controller,
and solves a hierarchical operational space control problem
to efficiently calculate individual joint torques, contact forces
with the ground, and motion of whole quadruped body. With
these methods, practical and robust gaits are possible, but they
require significant knowledge of control, dynamics, kinematics
for the locomotion task along with full-body control. However,
our method aims to control the robot without substantial
knowledge of the dynamics, kinematics, and control but just
basic knowledge of gaits. There is no requirement for prior
knowledge of trajectory planners or 3D modeling of the
robot in our approach. For the implementation of initial gait
using supervised learning, the requirement lies for supervised
learning, which includes the dimensions of the quadruped
robot and bounds for each actuator that is useful for state
and action space. While in practice, knowledge of dynamics
and control may accelerate the learning process [19] through
which prior assumptions of gait will be broadly applicable with
more diverse conditions. Implementing deep RL algorithm to
adapt legged locomotion in simulation has been accomplished
[5], [12], [15] along with sim-to-real transfer learning [10],
[12]. Sim-to-real transfer learning needs a tuning curve which
creates discrepancies between real-world environment and
simulation environment. Using deep RL algorithms directly on
real-world applications have been one of the main challenges
in reinforcement learning. Moreover, our framework includes
direct implementation of a deep RL algorithm with supervised
learning on real hardware.

Fig. 2 Final trajectory of pneumatic quadruped robot

III. MECHANICAL DESIGN

One of the main factors kept in mind while designing the
legged robot is the weight of the robot and the availability
of actuators capable of providing enough force/torque. The
chassis made up of Aluminum in collaboration with ABS
has an excellent weight to strength/stiffness ratio compared to
other composites such as acrylic or poly-carbonate at the given
speed and load. Each leg module has two pneumatic cylinders,
a damper pad at the leg’s foot that provides sufficient traction.
Each leg has two active degrees of freedom provided by the
two cylinders. The piston’s nature helps attain the precise
position required with the desired force using position and
pressure sensors. The larger cylinder provides the robot with
the necessary force to counterbalance the expected reaction
and some excess force to lift the body off the ground. The
lateral oscillatory motion of the larger piston is provided by
the smaller cylinders that help the robot move forward. For
this motion, the smaller cylinder is hinged on both sides. A
smaller cylinder’s rod is connected to the larger cylinder with
the help of an eyeball joint, which is a form of a spherical
joint. The hinges allow the smaller cylinder to compensate for
the rotary movement of the larger piston freely. The air inside
the cylinder acts like a virtual spring and provides compliance
to the leg module. Fig 3 demonstrates the complete mechanical
design used for this paper.

IV. CONTROL THEORY

A. Kinematics

For control strategy analysis of the quadruped robot,
pertaining to gait development, it was necessary to track the
contact point of the leg in the Cartesian plane concerning the
body. We track the position of the point of contact/end-effector
of the robot and find the jacobian of the following for finding
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Fig. 3 Mechanical design overview

TABLE I
NAMING CONVENTION FOR SYMBOLS

Symbols Description

Pressure in Pascal Ppa

Stroke length Lext

Maximum stroke length Lmax

Area of piston A
Joint twist Sn

Joint linear/angular displacement θn
Mass m
Spring constant K

the end-effector velocity/force.

T (θ) = e[Sn]θn

B. Dynamics

The dynamic approach for the pneumatic quadruped robot is
described in equation 2. Although these apply separately to the
hip and the leg piston [20], the underlying concept is the same,
so we mention the following for the leg piston concerning the
body. Dynamics is applied to control the force applied by each
pneumatic piston [21], [22].equation Lagrangian L to find the
equations of motion with constraint system:

L =
m

2
+( ˙Lext

2
+L2

ext∗ θ̇2)−mgLextScosθ−
K

2
∗L2

ext (1)

The above equation is the basic Lagrange equation for
dynamics on a pneumatic quadruped robot which can lead
to a stable gait, but with lots of engineering and prior
knowledge, In our approach, we have compared the gait by
using Dynamical equation and reinforcement learning, and we
found that this was not as stable as gait produced by deep RL.
Here, the equation complexity also increases as we increase
the robot’s degree of freedom (DoF).

C. Reinforcement Learning

Recent breakthroughs in reinforcement learning [5], [13],
[23], [24] and multi-legged locomotion have been dependent
on efficiently training deep neural networks along with
gradient descent. It is better to learn the network using
deep neural networks by feeding extensive data in deep
neural networks than handcrafted features from scratch.
These merits motivate our approach to apply reinforcement

learning in our quadruped robot. Our goal is to use a
deep reinforcement-learning algorithm for molding trajectories
without prior experience of dynamics and synchronization for
all legs. For reinforcement learning, prior knowledge can act
as a catalyst. The policy then results in better education of
the policy. Q-learning architecture [8] was the starting point
for our approach, but many input states and their respected
actions were causing computational deficiency concerning our
hardware. This algorithm is an off-policy algorithm because
it acquires the policy with the help of greedy exploration,
similar to taking random actions or maximizing the Q function.
Therefore, an action policy is not required for selecting
actions. Q learning is an off-policy [25] reinforcement learning
algorithm that tries to find the best action according to the
given input state or current state. Moreover, Q-learning tries
to understand the approach by continuously maximizing the
expected rewards fed through sensors data. Our algorithm, as
shown in algorithm 1, utilizes a technique known as experience
replay. We store all the previous experiences at each time-step,
e1 = (φt, at, rt, φt+1) in a dataset [D = e1, ....eN ] many
episodes are clubbed into a replay memory. Then we initialize
an action-value function Q with random weights. In each
episode, we select an action based on ε-greedy policy. As
shown in Fig. 5, our neural network takes four input states
of each leg, and actions are opening the pneumatic piston,
closing it, or nothing. As shown, Fig. 4 summarizes the whole
deep RL algorithm. It consists of four sections, which are
starting from Data collection, which uses the target network
for getting the action using greedy epsilon ε algorithm, and
since using histories of variable length will be difficult because
of memory constraint in real-world robots; instead, it works
on the fixed-length representation of histories produced by
a function φ; next, it measures all the sensory inputs and
calculates rewards. These states, action, reward, and next state
are stored in replay buffer D for every transition where each
transition is (φt, at, rt, φt+1) Then comes the gradient descent
part where we calculate the loss using the equation as shown
below,

θK+1 = θK + α[(ymaxa′Q(s′, a′; θi−1)

−Q(s, a, θi)−∇θiQ(s, a; θi))]
(1)

The asynchronous design makes the system more robust
towards hardware failure and issues related to communication.
This design can help to continue our training even after any
hardware failure in practice. We faced these issues during our
training. Thus, this system was beneficial for continuous flow.
This system can also be deployed for multiple machine setups
where it will not be dependent on any system.

In the pre-processing pipeline, we are using supervised
learning, as shown in Fig. 5. It consisted of 3 hidden layers
along with input states and output as actions. Here actions
are mapped to 12 by constraining the quadruped’s gait. This
design also decreases the complexity of the neural network.
Input states are the state of each piston which includes eight
total states. Moreover, the final gait was learned even faster
than many implementations are done on simulator [5]. This
same neural network is also used in the Deep Q learning
algorithm.
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Fig. 4 Asynchronous Learning system

Algorithm 1: Deep Q learning with experience relay

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights

θ
3 while episode < M do
4 Initialize sequence s1 = x1 and prequel sequenced

φ1 = (s1)
5 while t < T do
6 With probability epsilon ε select a random

action
7 Otherwise select action

at = maxaQ ∗ (φ(st), a; θ)
8 Execute action and observe reward rt and next

state xt+1

9 Set st+1 = (st), at, xt+1 and preprocess
φt+1 = φ(st+1)

10 Store transition (φt, at, rt, φt+1) in D
11 Sample random mini-batch of transitions

(φj , aj , rj , φj+1) from D
12 if φj+1 is terminal then
13 yj = rj
14 end
15 if φj+1 is not terminal then
16 yj = rj + γmaxaQ ∗ (φj+1, a

′; θ)
17 end
18 Perform a gradient descent step on

(yj = −Q ∗ (φj , aj ; θ))2
19 end
20 end

This approach has several advantages over other Deep RL
algorithms. Experience relay [12] is used to update weights,
which results in data efficiency compared to Q-learning.
Also, randomizing the samples helps in efficiently updating
weights because of the low correlation between samples. In
this example, we store limited experience replay memory
due to memory constraints. Deep Q learning algorithm was
sampled efficiently for our pneumatic quadruped robot, which
uses physical hardware. Thus, we used a supervised training

Fig. 5 Simulation Results

approach using the same network as shown in Fig. 1, which
consisted of three hidden layers; we trained this network with
an unstable crawling gait. The input state consisted of eight
inputs where the leg consisted of three values 0,1, and -1,
which includes 0 for the intermediate state, as shown in Fig.
5. If we had taken all actions of a pneumatic quadruped
robot, it would have become 34 actions, but our output state
consisted of 12 actions. These 12 actions were implemented
by considering the front two legs with the same actions,
thus simultaneously reducing the action size and computation.
This process gave us some pre-trained weights for the Deep
reinforcement learning algorithm. For each state, the actions
were mapped as the desired output. In this way, we achieved
better sample efficiency and reduced the hardware damage
caused by random weights.

V. TRAINING AND STABILITY

In a supervised learning algorithm (deep learning
algorithm), tracking the training and evaluation of the model is
comparatively easier than reinforcement learning algorithms.
According to the actions recorded as per unstable crawling
gait, the model was trained in the supervised learning
technique. Our algorithm uses the mean of total rewards, which
we periodically train using gradient descent. In Fig. 7, the
rewards of the bot are mapped according to the distance of
the bot concerning the origin. In Fig. 6, the stability of the
bot has been plotted using the roll value of the IMU sensor.
The stability is more in the deep RL model as compared to the
dynamic model. Fig. 2 shows us the analysis of the height of
the robot concerning the ground. Here, the robot is hopping at
a consistent height [26], maintaining stability. In the training
phase, the bot opted for this gait after 2 hours of training.
These training hours were reduced by providing pre-trained
weights on a similar gait.

VI. EXPERIMENTS

We use the PyTorch framework to implement a neural
network for deep reinforcement learning. We use the same
algorithm as in [23]. Our rewards scheme was the distance
between the bot, and the origin, using a laser mounted at the
robot’s back. During training, the behavior policy was -greedy
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Fig. 6 IMU comparison with Dynamics and deep RL

Fig. 7 Reward

with annealed linearly from 1 to 0.1 over the first few episodes
and fixed at 0.1 after that [27].

VII. RESULTS

In this framework, the gait was learned from 400 episodes,
with each episode taking around 15 sec for each episode. Also,
there were other termination criteria when the quadruped fails
to update IMU reading according to a stable position. As per
the framework, the most efficient gait was the hopping gait
which we obtained. Then for the continuous motion, the same
gait was periodically and synchronously scheduled. As we can
compare the initial and final gait after the framework, there
was a vast difference in stability and speed. This framework
was also tested on different slopes, with all cases being
succeeded except steep slopes. This robustness was seen only
after training on flat terrain.

VIII. CONCLUSION

After the testing was conducted, it was concluded that such
a design and policy learned by deep RL were indeed possible.
A better damping model at the foot of the leg is needed
to minimize the transmitted force. There were losses in the
energy achieved due to the internal friction of the cylinder.
However, these losses and inefficiencies were avoided by deep
RL while training. The hopping gait obtained through the
policy was tested, and relevant results were obtained. The
robot works well with only two active DoF, but adding another
DoF would give it much more controllability, eventually
increasing policy complexity. The use of pneumatic provides
greater control in an active two-DF configuration with a
greater effective force, which is enhanced by the deep RL
algorithm. More work needs to be done to apply other deep
RL algorithms and analyze the true potential. After applying
supervised learning to improve the deep RL model in two,
DoF proved to be very efficient with minimal neural networks.
Due to its energy efficiency, low cost of transportation, and
reasonable force control, which can be increased through
different policies with better deep RL networks and models.

As per our research and knowledge, our application is the
first example of applying deep RL directly to the real-world
pneumatic quadruped robot. The next goal of this project can
be to optimize the reinforcement learning process for another
type of gaits and terrain to enhance its robustness further.
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