Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7046

Search results for: data mining

7046 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
7045 A Comparative Analysis of Different Web Content Mining Tools

Authors: T. Suresh Kumar, M. Arthanari, N. Shanthi

Abstract:

Nowadays, the Web has become one of the most pervasive platforms for information change and retrieval. It collects the suitable and perfectly fitting information from websites that one requires. Data mining is the form of extracting data’s available in the internet. Web mining is one of the elements of data mining Technique, which relates to various research communities such as information recovery, folder managing system and simulated intellects. In this Paper we have discussed the concepts of Web mining. We contain generally focused on one of the categories of Web mining, specifically the Web Content Mining and its various farm duties. The mining tools are imperative to scanning the many images, text, and HTML documents and then, the result is used by the various search engines. We conclude by presenting a comparative table of these tools based on some pertinent criteria.

Keywords: Data Mining, Web Mining, Web Content Mining, Mining Tools, Information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
7044 A Review: Comparative Study of Diverse Collection of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

There have been a lot of efforts and researches undertaken in developing efficient tools for performing several tasks in data mining. Due to the massive amount of information embedded in huge data warehouses maintained in several domains, the extraction of meaningful pattern is no longer feasible. This issue turns to be more obligatory for developing several tools in data mining. Furthermore the major aspire of data mining software is to build a resourceful predictive or descriptive model for handling large amount of information more efficiently and user friendly. Data mining mainly contracts with excessive collection of data that inflicts huge rigorous computational constraints. These out coming challenges lead to the emergence of powerful data mining technologies. In this survey a diverse collection of data mining tools are exemplified and also contrasted with the salient features and performance behavior of each tool.

Keywords: Business Analytics, Data Mining, Data Analysis, Machine Learning, Text Mining, Predictive Analytics, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
7043 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri

Abstract:

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
7042 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
7041 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
7040 Survey on Image Mining Using Genetic Algorithm

Authors: Jyoti Dua

Abstract:

One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: “Image Mining”. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.

Keywords: Image Mining, Data Mining, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
7039 ATM Service Analysis Using Predictive Data Mining

Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan

Abstract:

The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.

Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5374
7038 Web Application to Profiling Scientific Institutions through Citation Mining

Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles

Abstract:

Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.

Keywords: Citation Mining, Text Mining, Science Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
7037 STATISTICA Software: A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, P. Ranjetha

Abstract:

Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.

Keywords: Data Mining, STATISTICA Data Miner, Text Miner, Enterprise Server, Classification, Association, Clustering, Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
7036 A Multi-Agent Framework for Data Mining

Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh

Abstract:

A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.

Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
7035 An Efficient Data Mining Approach on Compressed Transactions

Authors: Jia-Yu Dai, Don-Lin Yang, Jungpin Wu, Ming-Chuan Hung

Abstract:

In an era of knowledge explosion, the growth of data increases rapidly day by day. Since data storage is a limited resource, how to reduce the data space in the process becomes a challenge issue. Data compression provides a good solution which can lower the required space. Data mining has many useful applications in recent years because it can help users discover interesting knowledge in large databases. However, existing compression algorithms are not appropriate for data mining. In [1, 2], two different approaches were proposed to compress databases and then perform the data mining process. However, they all lack the ability to decompress the data to their original state and improve the data mining performance. In this research a new approach called Mining Merged Transactions with the Quantification Table (M2TQT) was proposed to solve these problems. M2TQT uses the relationship of transactions to merge related transactions and builds a quantification table to prune the candidate itemsets which are impossible to become frequent in order to improve the performance of mining association rules. The experiments show that M2TQT performs better than existing approaches.

Keywords: Association rule, data mining, merged transaction, quantification table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
7034 Weka Based Desktop Data Mining as Web Service

Authors: Sujala.D.Shetty, S.Vadivel, Sakshi Vaghella

Abstract:

Data mining is the process of sifting through large volumes of data, analyzing data from different perspectives and summarizing it into useful information. One of the widely used desktop applications for data mining is the Weka tool which is nothing but a collection of machine learning algorithms implemented in Java and open sourced under the General Public License (GPL). A web service is a software system designed to support interoperable machine to machine interaction over a network using SOAP messages. Unlike a desktop application, a web service is easy to upgrade, deliver and access and does not occupy any memory on the system. Keeping in mind the advantages of a web service over a desktop application, in this paper we are demonstrating how this Java based desktop data mining application can be implemented as a web service to support data mining across the internet.

Keywords: desktop application, Weka mining, web service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3775
7033 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 221
7032 Concurrency in Web Access Patterns Mining

Authors: Jing Lu, Malcolm Keech, Weiru Chen

Abstract:

Web usage mining is an interesting application of data mining which provides insight into customer behaviour on the Internet. An important technique to discover user access and navigation trails is based on sequential patterns mining. One of the key challenges for web access patterns mining is tackling the problem of mining richly structured patterns. This paper proposes a novel model called Web Access Patterns Graph (WAP-Graph) to represent all of the access patterns from web mining graphically. WAP-Graph also motivates the search for new structural relation patterns, i.e. Concurrent Access Patterns (CAP), to identify and predict more complex web page requests. Corresponding CAP mining and modelling methods are proposed and shown to be effective in the search for and representation of concurrency between access patterns on the web. From experiments conducted on large-scale synthetic sequence data as well as real web access data, it is demonstrated that CAP mining provides a powerful method for structural knowledge discovery, which can be visualised through the CAP-Graph model.

Keywords: concurrent access patterns (CAP), CAP mining and modelling, CAP-Graph, web access patterns (WAP), WAP-Graph, Web usage mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
7031 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
7030 Moving Data Mining Tools toward a Business Intelligence System

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.

Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
7029 Analysis of Diverse Clustering Tools in Data Mining

Authors: S. Sarumathi, N. Shanthi, M. Sharmila

Abstract:

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
7028 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: Data mining, data analysis, prediction, optimization, building operational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
7027 Role of Association Rule Mining in Numerical Data Analysis

Authors: Sudhir Jagtap, Kodge B. G., Shinde G. N., Devshette P. M

Abstract:

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. The numerical data analysis became key process in research and development of all the fields [6]. In this paper we have made an attempt to analyze the specified numerical patterns with reference to the association rule mining techniques with minimum confidence and minimum support mining criteria. The extracted rules and analyzed results are graphically demonstrated. Association rules are a simple but very useful form of data mining that describe the probabilistic co-occurrence of certain events within a database [7]. They were originally designed to analyze market-basket data, in which the likelihood of items being purchased together within the same transactions are analyzed.

Keywords: Numerical data analysis, Data Mining, Association Rule Mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
7026 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2696
7025 A Web Text Mining Flexible Architecture

Authors: M. Castellano, G. Mastronardi, A. Aprile, G. Tarricone

Abstract:

Text Mining is an important step of Knowledge Discovery process. It is used to extract hidden information from notstructured o semi-structured data. This aspect is fundamental because much of the Web information is semi-structured due to the nested structure of HTML code, much of the Web information is linked, much of the Web information is redundant. Web Text Mining helps whole knowledge mining process to mining, extraction and integration of useful data, information and knowledge from Web page contents. In this paper, we present a Web Text Mining process able to discover knowledge in a distributed and heterogeneous multiorganization environment. The Web Text Mining process is based on flexible architecture and is implemented by four steps able to examine web content and to extract useful hidden information through mining techniques. Our Web Text Mining prototype starts from the recovery of Web job offers in which, through a Text Mining process, useful information for fast classification of the same are drawn out, these information are, essentially, job offer place and skills.

Keywords: Web text mining, flexible architecture, knowledgediscovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
7024 AudioMine: Medical Data Mining in Heterogeneous Audiology Records

Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne

Abstract:

We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.

Keywords: Audiology, data mining, chi-squared, self-organizing maps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
7023 MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management

Authors: M. Awawdeh, A. Fedi

Abstract:

The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.

Keywords: Data Mining, Environmental data, Mathematical Models, Matlab Graphical User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381
7022 A New Model for Discovering XML Association Rules from XML Documents

Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani

Abstract:

The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.

Keywords: XML, Data Mining, Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
7021 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: Data mining, textile production, decision trees, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
7020 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
7019 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
7018 Data Mining Classification Methods Applied in Drug Design

Authors: Mária Stachová, Lukáš Sobíšek

Abstract:

Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.

Keywords: data mining, classification, drug design, QSAR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
7017 A Hybrid Data Mining Method for the Medical Classification of Chest Pain

Authors: Sung Ho Ha, Seong Hyeon Joo

Abstract:

Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.

Keywords: Data mining, medical decisions, medical domainknowledge, chest pain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848