{"title":"Effect of Local Dual Frequency Sonication on Drug Distribution from Nanomicelles","authors":"Hadi Hasanzadeh, Manijhe Mokhtari-Dizaji, S.Zahra Bathaie, Zuhair M. Hassan, Hamid R. Miri, Mahbobe Alamolhoda, Vahid Nilchiani, Hamid Goudarzi","volume":45,"journal":"International Journal of Pharmacological and Pharmaceutical Sciences","pagesStart":503,"pagesEnd":508,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/8608","abstract":"The nanosized polymeric micelles release the drug\r\ndue to acoustic cavitation, which is enhanced in dual frequency\r\nultrasonic fields. In this study, adult female Balb\/C mice were\r\ntransplanted with spontaneous breast adenocarcinoma tumors and\r\nwere injected with a dose of 1.3 mg\/kg doxorubicin in one of three\r\nforms: free doxorubicin, micellar doxorubicin without sonication and\r\nmicellar doxorubicin with sonication. To increase cavitation yield,\r\nthe tumor region was sonicated with low level dual frequency of 3\r\nMHz and 28 kHz. The animals were sacrificed 24 h after injection,\r\nand their tumor, heart, spleen, liver, kidneys and plasma were\r\nseparated and homogenized. The drug content in their tumor, heart,\r\nspleen, liver, kidneys and plasma was determined using tissue\r\nfluorimetry. The results show that in the group that received micellar\r\ndoxorubicin with sonication, the drug concentration in the tumor\r\ntissue was nine and three times higher than in the free doxorubicin\r\ngroup and the micellar doxorubicin without sonication group,\r\nrespectively. In the micellar doxorubicin with sonication group, the\r\ndrug concentration in other tissues was lower than other groups\r\n(p<0.05). We conclude that dual frequency sonication improves drug\r\nrelease from micelles and increases the drug uptake by tumors due to\r\nsonoporation.","references":"[1] A. K\u251c\u255dmmerle, T. Krueger, M. Dusmet, C. Vallet, Y. Pan., H.B. Ris and\r\nL.A. Decosterd, \"A validated assay for measuring doxorubicin in\r\nbiological fluids and tissues in an isolated lung perfusion model: Matrix\r\neffect and heparin interference strongly influence doxorubicin\r\nmeasurements,\" J. Pharm. Biomed. Anal., vol. 33, 2003, pp. 475-494.\r\n[2] P. E. Colombo, M. Boustta, S. Poujol, F. Pinguet, P. Rouanet, F.\r\nBressolle, M. Vert,\"Biodistribution of doxorubicin-alkylated poly(llysine\r\ncitramide imide) conjugates in an experimental model of\r\nperitoneal carcinomatosis after intraperitoneal administration,\" Eur. J.\r\nPharm. Sci. vol. 31, 2007, pp. 43-52.\r\n[3] V. Alakhov, E. Klinski, S. Li, G. Pietrzynski, A. Venne, E. Batrakova, T.\r\nBronitch and A. Kabanov,\"Block copolymer-based formulation of\r\ndoxorubicin. From cell screen to clinical trials,\"Colloids Surf. B.\r\nBiointerfaces, vol. 16, 1999, pp.113-134.\r\n[4] A. M. M. Osman, M. M. Nemnem, A. A. Abou-Bakr, O. A. Nassier and\r\nM. T. Khayyal,\"Effect of methimazole treatment on doxorubicin-\r\nTissue Linear regression\r\nfunction\r\nCorrelati\r\non of\r\ncoefficien\r\nt\r\nP-value\r\nSpleen Y = 0.2X - 2.6 0.98 <0.01\r\nHeart Y = 0.1X - 1.6 0.98 <0.01\r\nLiver Y = 0.07X - 3.6 0.96 <0.01\r\nKidney Y = 0.2X - 4.8 0.98 <0.01\r\nTumor Y = 0.2X - 4.5 0.99 <0.01\r\nPlasma Y = 0.1X - 1.0 0.99 <0.01\r\nGroup Splee\r\nn\r\nLiver\r\nKidney\r\nHeart\r\nTumor\r\nPlas\r\nma\r\nDoxorubicin 2.50\r\n(0.09)\r\n1.13\r\n(0.09)\r\n1.90\r\n(0.21)\r\n2.49\r\n(0.09)\r\n1.50\r\n(0.41)\r\n0.82\r\n(0.12)\r\nMicellar\r\nDoxorubicin\r\n2.28\r\n(0.26)\r\n0.94\r\n(0.19)\r\n1.48\r\n(0.57)\r\n2.31\r\n(0.01)\r\n5.00\r\n(0.71)\r\n0.65\r\n(0.21)\r\nMicellar\r\nDoxorubicin\r\n+Sonication\r\n1.50\r\n(0.37)\r\n0.25\r\n(0.16)\r\n0.74\r\n(0.13)\r\n0.24\r\n(0.13)\r\n13.00\r\n(0.29)\r\n0.36\r\n(0.03)\r\ninduced cardiotoxicity in mice,\"Food Chem. Toxicol., vol. 47, 2009, pp.\r\n2425-2430.\r\n[5] A. Fundar, R. Cavalli, A. Bargoni, D. Vighetto, G. P. Zara and M. R.\r\nGasco,\" Non-stealth and stealth solid lipid nanoparticles (SLN) carrying\r\ndoxorubicin: pharmacokinetics and tissue distribution after i.v.\r\nadministration to rats,\"Pharmacol. Res, vol. 42, 2003, pp. 337-343.\r\n[6] A. H. Barati, M. Mokhtari-Dizaji, H. Mozdarani, S. Z. Bathaie and Z. M.\r\nHassan,\"Effect of exposure parameters on cavitation induced by lowlevel\r\ndual-frequency ultrasound,\" Ultrason. Sonochem, vol. 14, 2007,\r\npp.783-789.\r\n[7] R. Feng, Y. Zhao, C. Zhu and T. J. Mason,\"Enhancement of ultrasonic\r\ncavitation yield by multi-frequency sonication,\" Ultrason. Sonochem,\r\nvol. 9, 2002, pp. 231-236.\r\n[8] H. Hasanzadeh, M. Mokhtari-Dizaji, S. Z. Bathaie, Z. M. Hassan, V.\r\nNilchiani and H. Goudarzi,\"Enhancement and control of acoustic\r\ncavitation yield by low level dual frequency sonication: A subharmonic\r\nanalysis,\" Ultrason. Sonochem, 2010 to be published.\r\n[9] G. J. R. Charrois and T. M. Allen,\"Drug release rate influences the\r\npharmacokinetics, biodistribution, therapeutic activity, and toxicity of\r\npegylated liposomal doxorubicin formulations in murine breast cancer,\"\r\nBiochim. Biophys. Acta, vol. 1663, 2004, pp.167-177.\r\n[10] M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K.\r\nKataoka and S. Inoue,\"Characterization and anticancer activity of the\r\nmicelle-forming polymeric anticancer drug adriamycin-conjugated poly\r\n(ethylene glycol)-poly (aspartic acid) block copolymer,\"Cancer Res, vol.\r\n50, 1990, pp.1693-1700.\r\n[11] M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K.\r\nKataoka and Inoue S,\"Polymer micelles as novel drug carrier:\r\nAdriamycin-conjugated poly (ethylene glycol)-poly (aspartic acid) block\r\ncopolymer,\"J. Control. Release, vol. 11, 1990, pp. 269-278.\r\n[12] Y. I. Jeong, J. W. Nah, H. C. Lee, S. H. Kim and C. S. Cho,\"Adriamycin\r\nrelease from flower-type polymeric micelle based on star-block\r\ncopolymer composed of poly(gamma-benzyl L-glutamate) as the\r\nhydrophobic part and poly(ethylene oxide) as the hydrophilic part,\" Int.\r\nJ. Pharm, vol. 188, 1991, pp. 49-58.\r\n[13] H. L. Wong, A. M. Rauth, R. and Bendayan, X. Y. Wu,\"In vivo\r\nevaluation of a new polymer-lipid hybrid nanoparticle (PLN)\r\nformulation of doxorubicin in a murine solid tumor model.\"Eur. J.\r\nPharm. Biopharm, vol. 65, 2007, pp. 300-308.\r\n[14] R. K. Subedi, K. W. Kang and H. K. Choi,\"Preparation and\r\ncharacterization of solid lipid nanoparticles loaded with\r\ndoxorubicin,\"Eur. J. Pharm. Sci, vol. 37, 2009, pp. 508-513.\r\n[15] K. Kazunori, S. K. Glenn, Y. Masayuki, O. Teruo and S.\r\nYasuhisa,\"Block copolymer micelles as vehicles for drug delivery,\"J.\r\nControl. Release, vol. 24, 1993, pp.119-132.\r\n[16] M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C. Shibazaki and K.\r\nKataoka,\"Toxicity and antitumor activity against solid tumors of\r\nmicelle-forming polymeric anticancer drug and its extremely long\r\ncirculation in blood,\"Cancer Res, vol. 51, 1991, pp. 3229-3236.\r\n[17] G. S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai and K.\r\nKataoka,\"Physical entrapment of adriamycin in AB block copolymer\r\nmicelles,\" Pharm. Res, vol. 12, 1995, pp. 192-195.\r\n[18] Y. I. Jeong, H. S. Na, K. O. Cho, H. C. Lee, J. W. Nah and C. S,\"\r\nAntitumor activity of adriamycin-incorporated polymeric micelles of\r\npoly([gamma]-benzyl l-glutamate)\/poly(ethylene oxide),\" Int. J. Pharm,\r\nvol. 365, 2009, pp. 150-156.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 45, 2010"}