
SPA-VNDN: Enhanced Smart Parking Application
by Vehicular Named Data Networking

Bassma Aldahlan, Zongming Fei

Abstract—Recently, there is a great interest in smart parking
application. Theses applications are enhanced by a vehicular ad-hoc
network, which helps drivers find and reserve satiable packing spaces
for a period of time ahead of time. Named Data Networking (NDN) is
a future Internet architecture that benefits vehicular ad-hoc networks
because of its clean-slate design and pure communication model.
In this paper, we proposed an NDN-based frame-work for smart
parking that involved a fog computing architecture. The proposed
application had two main directions: First, we allowed drivers to
query the number of parking spaces in a particular parking lot.
Second, we introduced a technique that enabled drivers to make
intelligent reservations before their arrival time. We also introduced
a “push-based” model supporting the NDN-based framework for
smart parking applications. To evaluate the proposed solution’s
performance, we analyzed the function for finding parking lots
with available parking spaces and the function for reserving a
parking space. Our system showed high performance results in
terms of response time and push overhead. The proposed reservation
application performed better than the baseline approach.

Keywords—Cloud Computing, Vehicular Named Data Networking,
Smart Parking Applications, Fog Computing.

I. INTRODUCTION

SMART parking applications have attracted many

researchers in recent years, especially with the increasing

number of vehicles in urban cities. Finding an available

parking spot could be stressful in big crowded cities. Drivers

may circle around several times to find parking spaces,

making it time-consuming and a waste of gasoline. When

more than one vehicle attempts to find parking space in

a mostly vacant parking area, the traffic congestion and

pollution could increase. To solve this issue, we need a smart

parking application to help us find a suitable parking lot.

Some projects such as SFpark (San Francisco) and

LA Express Park (Los Angeles) [1] take advantage of

smart parking applications using smartphones. In these

projects, many sensors were deployed to collect the sensed

data and send them to the nearby meters. Drivers with

smartphone devices can request the availability of parking

spaces. These projects are promising solutions. However,

they need improvements on several aspects to satisfy the

demand in real-time. First, all drivers can get the same

information regarding parking space availability. Second,

real-time availability data are only available for vehicles near

the parking location. Third, installing sensors should be more

robust to avoid road obstacles; interpreting and processing

B. Aldahlan is with Yanbu University College, Yanbu, Saudi Arabia
(correspondence author, e-mail: aldahlanb@rcyci.edu.sa, baldahlan@uky.edu).

Z. Fei is with University of Kentucky, Lexington, KY 40503 USA. He is
now with the Department of Computer Science (e-mail: fei@netlab.uky.edu).

those sensed data should be done through a wireless network

to prevent sending high traffic to the same spectrum.

Intuitively, the development of a smart parking solution

can reduce parking search time and traffic congestion. It can

also reduce environmental pollution and fuel consumption.

In addition, smart parking brings economic benefits by

increasing activities and business opportunities. In this context,

a vehicular ad-hoc network (VANET) is a critical technology

that can be considered in smart parking applications to

allow vehicles to communicate with each other or enable

infrastructure, such as road side units (RSUs) and base stations

(BSs), to serve the smart parking systems. In VANETs, the

main communication modes are vehicle-to-vehicle (V2V), in

which a VANET can form a pure communications mode

between on-board units (OBUs) via a wireless network

(IEEE 802.11p), and vehicle-to-infrastructure (V2I), the

communication between vehicles and infrastructure, such as

RSUs and BSs through either IEEE 802.11p or cellular

communication.

Using V2V communication in smart parking systems

could face challenges. In VENETs, vehicles are limited in

sharing their sensed information via V2V communication.

Also, sending huge information through relay nodes

can be energy-consuming. On the other hand, VANET

supports real-time information dissemination. By utilizing V2I

communication, the smart parking system performs better.

However, deploying RSUs everywhere can be costly in

terms of installation, deployment, and maintenance. RSUs’

capability in computation and storage can be limited as well.

Currently, smart parking applications use an IP-based

network to enable communication. However, an IP-based

network has many issues: First, its limited resources do not

make it easy to assign a unique IP address to all sensors

and vehicles. Second, achieving requests via those unique

addresses in a mobile environment like VANETs is not trivial.

Third, the IP-based method depends on where the data reside,

not on where the content is, forcing us to find the target node

that has the information regarding the smart parking system

[2].

Vehicular named data networking (V-NDN) has brought

more attention to academic and industrial fields. It replaced the

traditional IP network with NDN to overcome the limitations

in IP networks. V-NDN is a promising network architecture

that supports high mobility and intermittent disconnectivity.

The nature of NDN, where the data content can be fetched

from the producers or any associated cache, can play a role

in VANETs, such as by enhancing self-certification and layer

security. NDN also supports multicast communication in a

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

195International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

mobile environment. However, it still has challenges that need

to be addressed.

This paper provides a design of an NDN-based framework

for smart parking applications, taking advantages of the benefit

of fog-computing to answer drivers’ queries about whether

there is parking space available in a particular geographical

area. Further, these applications introduce a technique that

allows drivers to make reservations ahead of time. We assume

that sensors are installed in the parking lots to collect

availability information, and sensors on vehicles can help with

the parking application. We also introduced a “push-based

model” to integrate sensor nodes into the system for sensor

nodes to deliver the information proactively.

II. RELATED WORK

Recently, smart parking applications have been considered

as important applications in VANET and have attracted

many researchers in the industrial and research fields. Many

survey studies [1], [3]–[5] were conducted to investigate

these applications. Lin et al. [1] proposed a survey

paper that depends on a smart parking ecosystem and a

comprehensive classification of smart parking applications

by identifying the functionalities of the existing work and

their problematic priorities. They divided the existing work

into three macro-themes based on the target of each work:

information collection tools that assist in gathering data, such

as sensors, actuators, and parking meters; system deployment,

which handles the software system exploitation that assists

with the statistical analysis of the collected data and provides

data prediction; service dissemination, which deals with the

relationship between the gathered information and some

social feature related to the driver’s behaviors, including

parking competition, information dissemination, and packing

behavior. Both [4] and [3] discussed some technologies

about parking availability monitoring, parking reservation, and

dynamic pricing. In [4], the authors investigated the different

technologies regarding parking availability monitoring. These

technologies help in the dissemination of the associated

information regarding parking space availability and parking

reservation. The authors aimed to ensure higher customer

satisfaction and increase revenue from parking services.

Parking reservation allows the drivers to reserve the parking

space in advance before arriving at the parking area.

The authors studied parking infrastructure from different

perspectives. Faheem et al. [5] presented a review paper

showing different intelligent parking services (IPS), which are

used for parking guidance and parking facility management.

The authors discussed all the techniques that contribute to

having an efficient and modern parking system. Faheem et al.

[5] provided an economic analysis that assessed the project’s

feasibility.

Parking reservation enables drivers to reserve the parking

spaces before their arrival time. Integrating reservation policies

with smart parking provides many benefits for both the

drivers and the managers of parking areas. Delot et al. [6]

proposed a reservation protocol that allows vehicles to search

for available parking slots based on their requested event.

Vehicles with similar interests in a relevant event will be

cooperatively gathered. Besides that, the relevant direction

of vehicles is taken into account to support the reservation

strategy. They aimed to avoid competition between the

vehicles. Doulamis et al. [7] introduced an intelligent parking

reservation management that relies on optimal strategy, aiming

to promote the service quality of drivers and increase the

parking spaces’ utilization. The proposed approach utilizes the

interval scheduling principles represented as a list of parking

requests provided as a set of requested time intervals. The

authors presented a scheduler that can determine whether to

accept the task and assign it to some resource or to deny it.

They also introduced an adaptive pricing policy proportional

to the rejection probability of a parking request.

Karbab et al. [8] proposed a scalable and low-cost car

parking framework (CPF). The authors introduced driver

guidance, automatic payment, parking lot retrieval, security,

and vandalism detection. They also introduced a standard I2C

protocol to cluster a group of sensors into a single mote.

They used smartphone applications to reserve parking slots

and hybrid wireless communications. The GPS helps in getting

the real-time location and guidance toward the destination.

However, smartphone applications are only beneficial if the

driver is within 2 km of the location.

Smart parking applications involve a high amount of data

traffic through various sensors. This high amount of traffic

caused by the Internet of Things (IoT) sensed data are

considered. Both [9] and [10] have studied the ability of

cloud computing, especially fog computing, on VANET, to

support the computational demands and reduce the response

time. Fog computing at edges can bring the benefits of

computing, processing, and storage to the edges to be more

closer to the sensor devices. Hou et al. [11] introduced

the idea of exploiting fog computing in VANET. Vehicular

fog computing (VFC) utilizes a vehicular node to act as a

fog node for communication and computation. The authors

used the mobile and parked vehicles as infrastructure to

perform communication and computation. Xiao and Zhu [12]

also introduced an idea similar to VFC. They considered

the connected vehicles as mobile fog nodes. They presented

cost-effective and on-demand fog computing for vehicular

applications. Tang et al. [13] proposed a parking slot allocation

strategy that considered real-time parking slot information by

exploiting the fog computing-based capabilities on a smart

parking architecture, aiming to enhance smart parking in

real-time. The deployed fog nodes (RSUs) at parking lots

can communicate and cooperate, allowing parking request

processing. Meanwhile, the centralized cloud can promote

smart parking capability by enforcing global optimization on

parking requests. They provided an allocation strategy that

considered the comprehensive factors that can affect decision

making, such as walking, driving, and waiting costs. Installing,

deploying, and maintaining an RSU for every parking to

achieve one-hop communication could be expensive. Yi et al.

[14] proposed a packing reservation auction system that uses

cloud fog computing associated with parked vehicle cloud.

They aimed to guide mobile vehicles to the available parking

spaces with less effort. They also used the fog capability of

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

196International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

parked vehicles to help the delay-sensitive computing services

through monetary rewards to compensate for their service

cost and allocate the workload to each CPU. This solution

results in performance due to the enhancement of the fog node

controller, the smart vehicles, and the parking places. However,

this work considered only the parked vehicles located in some

parking areas and did not consider on-street parking. The

authors did not mention any criteria to select those parked

vehicles.

Despite the previous solutions, the smart parking application

is still in its early stages and needs improvements. In this study,

we developed a VNDN-based smart parking application using

a fog computing architecture that supports IoT data collection

and avoids the overcrowdedness of the central cloud approach.

III. SPA-VNDN: DESIGN

A smart parking application is developed to provide two

functions. One is to allow a driver to find parking lots that

have available parking spaces. The driver can send out the

request as an interest packet in the NDN architecture and the

replies can come from multiple parking lots. It is up to the

driver to pick any specific parking lot. Normally, the driver

wants to find available parking space at this moment. We will

discuss a case in which the driver may be interested in the

availability in the future. This is related to the function we

will discuss next.

The other function is to allow a driver to reserve a parking

spot in a particular parking lot for a period of time. This can

happen after the driver finds a list of parking lots with available

spaces in some future time. Then, the driver picks one to make

a reservation with the arrival and departure times specified.

Similar to the previous function, the driver can also provide

geographical-area information in the request packet so that it

can be forwarded to the correct location, rather than using the

broadcast method.

The smart parking application adopts a fog cloud

architecture to provide a flexible structure and improve the

response time. The NDN naming scheme was designed to

identify the request, either for finding an available parking

space or making a reservation for the future. We introduced

a push-based model into the NDN architecture to streamline

the process for allowing sensor nodes installed to get the

information into the system.

A. Design Assumption of the Smart Parking Application

We consider a topology with roads with traffic in both

directions and interactions where decisions are made to change

directions. In addition, sensor nodes will be installed to collect

real-time information, and cloud computing elements will be

used to meet the communication and computing requirements

of the application. Fig. 1 illustrates the main components.

1) Vehicles: Vehicles can communicate with other vehicles

and with infrastructure units (fog nodes). They are

equipped with a Global Positioning System (GPS),

which can tell the location of the vehicle. We can

classify vehicles into two types: static vehicles (parked

vehicles) that are parked in a parking garage or

Fig. 1 Network Topology

the curbside of roads, and dynamic vehicles (mobile

vehicles) that are moving.

2) Sensors: Sensors are installed to monitor a variety

of status. In particular, the parking application may

have sensors to monitor whether a parking spot is

free. In addition, modern vehicles are equipped with

many sensors that can also contribute information to

the parking application, such as location, speed, and

direction.

3) Road Side Units: RSUs are computing, storage, and

communication resources installed on the road side for

supporting modern transportation systems. They are an

important component of VANET and will be a good

candidate as the fog node in the fog cloud architecture.

However, not all roads have RSUs installed. Vehicles and

RSUs communicate through WiFi IEEE802.11p/WAVE

technology, and the quality of the communication

can be significantly better than vehicle to vehicle

communication.

4) Dedicated Servers: Dedicated servers may be installed

in big parking garages for managing the parking space.

They can also be incorporated into the fog cloud

architecture.

5) Central Cloud: Central cloud provides a central storage

and processing service for the fog nodes connected to

the architecture. It provides global information necessary

for coordination among the fog nodes.

1) Fog Cloud Architecture: We considered several

architectural candidates for the smart parking application.

One possibility is that we can depend on RSUs and dedicated

servers on larger parking garage to handle the requests,

without any help from the cloud architecture. There are

four limitations. First, there are smaller parking lots without

dedicated servers or not covered by RSUs. We will not be

able to include those parking spaces into the application.

Second, if the dedicated servers or the RSUs crashes, the

information stored will be lost. For example, the reservation

information will not be able to be recovered and agreements

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

197International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

with customers will not be able to be honored. Third,

different parking lots will not be able to cooperate with each

other, such as recommending alternative parking places if the

current lot is full. And finally, deploying RSUs and dedicated

servers can be costly.

The second possibility is that we can use a centralized

cloud server to handle all the requests from users. There

are two potential issues. First, the central cloud becomes the

concentration point of all requests. It can take a longer time for

a user to get the response than the case in which a request can

be processed by a distributed and close-by server. Second, the

state information collected by the sensors will be sent over

to the cloud. This can be huge, depending on the scope of

parking spaces the central cloud is handling.

Instead, we consider an architecture based on the fog cloud

computing. We still have a central cloud service that has a

large pool of processing and storage resources that can be

allocated on demand to meet the ever-changing requirement

of the system. In addition, we have fog nodes distributed in

different parts of the system, located at the edge of cloud

and close to the parking space they serve. They will handle

the request for the spaces they are in charge. The central

cloud server also acts as the backup service in case of some

critical states at distributed fog nodes are lost. It also has the

authority to manage the fog infrastructure by authorizing the

setup and tear-down of fog nodes. The fog nodes can be RSUs,

dedicated servers, or even vehicles. Usually, status information

generated by the sensor nodes is sent to the fog nodes. Only

aggregated information or critical states will be forwarded to

the central cloud. For example, whether a particular parking

spot is occupied is kept at the fog node, while the total number

of free spaces may be forwarded from the fog node to the

central cloud server.

For large parking garages, dedicated servers will be the first

choice as the fog node, because their processing units are more

powerful and storage space is larger. Similarly, when there

is an RSU next to a parking lot, we will prefer using the

RSU as a fog node to take care of processing requirements.

These two kinds of fog nodes are easy to set up and we will

not focus on them in our following discussion. However, for

parking lots that do have dedicated servers available or are not

covered by RSUs, or they are out of service due to hardware

or software failure. We proposed to utilize the capability of

Vehicular Fog Computing (VFC) [11], [15], [16] to set up

vehicle-based fog nodes to handle the requests for these lots.

The VFC is especially useful for handling the cases such as

curbside parking and small parking areas.

We have to address several issues. First, we need to select a

vehicle as a fog node. Generally, we prefer to select a parked

vehicle because it will stay in place for a longer period of

time. Second, we need to enable vehicles and sensor devices

to communicate with the selected fog node. The fog node

maintains computing, storage and communication capabilities

to handle users requests. Third, we need to connect the fog

node with the central could so that it can be authorized to make

decisions and be trusted by sensor nodes and other vehicles.

Also we need to handle the transition to other vehicles once

the current fog node needs to leave the location.

B. Fog Cloud Architecture

We considered several architectural candidates for the smart

parking application. One possibility is that we can depend

on RSUs and dedicated servers on a larger parking garage

to handle the requests, without any help from the cloud

architecture. There are four limitations. First, there are smaller

parking lots without dedicated servers or not covered by

RSUs. We will not be able to include those parking spaces

into the application. Second, if the dedicated servers or the

RSUs crash, the information stored there will be lost. For

example, the reservation information will not be recovered,

and agreements with customers will not be honored. Third,

different parking lots will not be cooperate with each other,

such as by recommending alternative parking places if the

current lot is full. Finally, deploying RSUs and dedicated

servers can be costly.

The second possibility is that we can use a centralized

cloud server to handle all the requests from users. There

are two potential issues. First, the central cloud becomes the

concentration point of all requests. It can take longer for a

user to get the response than when a request is processed by a

distributed and close-by server. Second, the state information

collected by the sensors will be sent over to the cloud. This

can be huge, depending on the scope of parking spaces the

central cloud is handling.

Instead, we consider an architecture based on fog cloud

computing. We still have a central cloud service with a large

pool of processing and storage resources that can be allocated

on demand to meet the ever-changing requirement of the

system. In addition, we have fog nodes distributed in different

parts of the system, located at the edge of cloud and close

to the parking space they serve. They will handle the request

for the spaces they are in charge of. The central cloud server

also acts as the backup service in case of some critical states

at distributed fog nodes are lost. It also has the authority

to manage the fog infrastructure by authorizing the setup

and tear-down of fog nodes. The fog nodes can be RSUs,

dedicated servers, or even vehicles. Usually, status information

generated by the sensor nodes is sent to the fog nodes. Only

aggregated information or critical states will be forwarded to

the central cloud. For example, whether a particular parking

spot is occupied is kept at the fog node, while the total number

of free spaces may be forwarded from the fog node to the

central cloud server.

For large parking garages, dedicated servers will be the first

choice as the fog node, because their processing units are more

powerful and storage space is larger. Similarly, when there is

an RSU next to a parking lot, we will prefer using the RSU as

a fog node to take care of processing requirements. These two

kinds of fog nodes are easy to set up, and we will not focus

on them in our following discussion. However, for parking

lots that are not dedicated servers, are not covered by RSUs,

or are out of service due to hardware or software failure, we

proposed to utilize the capability of VFC [11], [15], [16] to

set up vehicle-based fog nodes to handle the requests for these

lots. The VFC is especially useful for handling cases, such as

curbside parking and small parking areas.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

198International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

We have to address several issues. First, we must select a

vehicle as a fog node. Generally, we prefer to select a parked

vehicle because it will stay in place for a longer period of

time. Second, we must enable vehicles and sensor devices

to communicate with the selected fog node. The fog node

maintains computing, storage, and communication capabilities

to handle user requests. Third, we should connect the fog node

with the central could so that it can be authorized to make

decisions and be trusted by sensor nodes and other vehicles.

Also, we need to handle the transition to other vehicles once

the current fog node leaves the location.

1) Selection of Fog Nodes: Ultimately, the central cloud

has the authority to select which vehicle can be the fog node

for a particular parking space. Information about potential

candidates – parked vehicles – should be obtained by the

central cloud to make the decision. With no existing fog

node, interested parked vehicles can send information to

the cloud directly. This may be done by vehicle to vehicle

communications until the message reaches an RSU or other

fog node handling a different parking area that has a channel

to the central cloud. With an existing fog node in the area,

information about parked vehicles can be collected and sent

to the central cloud so that a new fog can be selected once

the current fog node leaves the area.

The attributes of the parked vehicles that will be sent to the

central cloud include the following:

1) Vehicle ID: the identification of the vehicle.

2) Current location: the x and y coordinates of the vehicle.

3) Storage size, computing and communication capacities:

the processing power of the vehicle.

4) Parking duration: the period that the vehicle will be

parked.

5) Willingness: a vehicle is willing to participate in forming

a vehicular cloud. A vehicle sending information usually

has a high level of willingness to participate.

The central cloud maintains a data repository to gather

vehicles and the fog cloud information. Based on the data

collected regarding the vehicle’s information, the central cloud

uses some criteria to select the fog node as the initial setup

for a parking space or as the replacement for the current fog

node that will leave the area. First, the central cloud has a set

of thresholds, and only those nodes with metrics equal to or

greater than the thresholds can become candidates. The criteria

are as follows:

1) Computing, storage and communication capacities:

These vary from vehicle to vehicle. The central cloud

specifies a threshold and filters out all vehicles that do

not meet the threshold requirement.

2) Duration of being active: Another factor to consider is

how long the vehicle can provide service. The central

cloud will balance the capacities and duration of service.

3) Behavior rate: In addition to the vehicles’ willingness

to serve, the central cloud also maintains information

about their past behavior. Vehicles with high ratings will

be preferred. The central cloud performs an adaptive

adjustment to rate the vehicles’ node behavior based on

the previous monitoring of the participating vehicles.

Each time a vehicle participates as a fog node, the

cloud monitors the fog nodes and rates them based on

how long they serve and based on the other vehicles’

performance.

2) Communication with Fog Nodes: After a static vehicle

is selected as the fog node, it will broadcast an advertisement
message to inform other nodes in the same geo-area, including

sensor devices and other vehicles.

The following naming convention is used for the

advertisement message: “/advertisement/Fog nodeID/

current position/type/duration.” In this format, “advertisement”

indicates the type of message, which is a broadcast message;

“Fog nodeID” represents the identification of the selected fog

node; “current position” indicates the current position of the

fog node at the time; “type” indicates whether the fog node

is an RSU, a dedicated server or a parked vehicles; and

“duration” shows the duration in which the fog node will be

active.

After receiving this message, other nodes will receive

information about the fog node, including Fog nodeID,

current position, type, and duration. The device (e.g., vehicle

or sensor) can include the interest name of the advertisement

message in its PIT table. Intermediate nodes in the NDN

architecture also record it as a pending interest with the

incoming interface.

When the PIT entry is set up in the PIT table of a vehicle or

a sensor node, it can push any sensed data messages or send

any other requests regarding the smart parking applications to

the fog node. The difference is that the device can periodically

send updated state information, not just one message, to

meet the requirement of the interest packet. The device

can identify the message as push-based status information

associated with the fog node using its “Fog nodeID.” To

support the push-based model, we must modify the PIT table

entry at intermediate nodes. Instead of removing the entry

after one message meeting, the interest is forwarded via the

incoming interfaces. It will keep the entry for the duration

specified in the advertisement message sent by the fog node.

C. Finding Parking Lots with Available Parking Space

The first function we want to implement for the smart

parking application is to enable drivers to find parking lots

with available parking space. We assume that drivers send a

query to check parking space availability for a specific area.

When these interest packets arrive in the target area, all parking

lots with available parking space will reply.

To realize the function, we assume that sensors (IoT

devices) are installed to monitor the parking space in

each parking lot. We assume that there are n number of

parking spots denoted by P = {p1, p2, ..., pn}. The real-time

information of a parking spot can be collected by a parking

sensor, and it will be pushed to the associated fog node.

The fog node is responsible for collecting parking space

information regarding occupancy and availability. It maintains

a data structure, which is composed of a list of three-tuple:

(parking Id, occupancy status, vehicleId).

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

199International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

1) parking Id (i): each parking spot is identified by a unique

parking Id and is associated with the corresponding

position (xi, yi) on the Euclidean plane.

2) occupancy status (OS): this indicates the status of the

monitored parking space. It could be vacant or occupied,

which can be represented in 2

OS(i)= { 1 ifavehicleisparkedatparkingspotpi
0 if the parking spot pi is vacant

3) vehicle Id: this represents the vehicle’s identification that

occupies a parking space. This field is only used when

the occupancy status value is 1; otherwise, this field will

be empty.

To answer the request from the user whether there is a

available parking space, we can simply find the value of

∃i : OS(i) = 1. This is only true if we do not accept

reservations. In case the fog node allows drivers to reserve

parking space ahead of time, we will need a more complicated

data structure, which will be described in the next section,

to answer the question of whether there is a parking space

available.
The naming format of the interest message for

requesting whether there is a available parking

space can be: “application type/Application name/data

name/timestamp/Geo-area.” In this format, “Application type”

should be type A, indicating that it is an application interested

in location-associated information. “Application name”

indicates it is a request for parking information, i.e., it is

smart parking application; “Data name” represents the request

is specifically requesting for parking lots with available

parking spaces. “Timestamp” specifies the time the driver

is interested in the availability information. Normally, it is

the current time for requesting current availability. For the

fog nodes that allow reservation, the query can also ask

whether the parking lot has space available in some future

time. This requires more complicated processing but can be

accommodated with the reservation function discussed in the

next section.
When a vehicle needs to look for a place to park, it can send

a request as an interest packet for finding parking lots with

available parking spaces. This request includes the geo-area

information indicating the area the drive is interested in. This

interest packet can be forwarded by other intermediate nodes

using the algorithm proposed in the previous chapters to the

desired target geographical area. The vehicles can use the V2V

communication or take advantage of whatever infrastructure is

available.
Upon receiving an interest message, an intermediate node

will check its CS for matching content. If content with a

matching timestamp is found, it will forward the corresponding

data back to the vehicle making the request. Otherwise, it will

check its PIT table for the same interest name. If the entry

with the same interest name exists, the incoming interface of

the interest will be added to the corresponding interfaces field

in the PIT table. The interest entry in the PIT table will be

removed if the entry timer expires.
When a fog node is in charge of a parking space in the target

geo-area, it will process the interest packet and send back the

data packet with related information. This data packet will be

forwarded back to the vehicle making the request.

NDN fits perfectly with this function of the smart

parking application because multiple drivers can send interest

messages requesting the same content about available parking

space. These requests will be aggregated along the way, except

the fusion point will have multiple incoming interfaces, which

will be used to forward data packets back to these drivers.

All drivers can be satisfied with the same corresponding

data packet from either the fog node or any caches at the

intermediate nodes along the way.

D. Reserving a Parking Space

The other function of the smart parking application provide

is to allow a driver to reserve a parking spot before his/her

arrival from any location he/she currently is. The reservation

will be based on the first comes first serve (FCFS) basis.

For the reservation application, we use the fog node to

maintain the data related to parking spaces located at the same

location and process the corresponding transactions locally.

Also the fog node will use the central cloud as the backup

service to maintain crucial states including existing user

reservations. The central cloud also play a role of managing

the setup of a new fog node and transition old states to it.

Multiple drivers may make reservations from the same

parking lot with the same fog node. Each requester should

be satisfied differently with the unique data content related

to the request. NDN can satisfy multiple interest packets

that carry the same name by fetching the original data from

the producer or any intermediate node’s corresponding data

content. In this case, the data content will be the same for all

the consumers. However, the case for reservation in the smart

parking application is different in the sense that each requester

should be satisfied differently, even though their interest packet

may have the same name.

To deal with the issue, we need to make some modifications

to NDN packets by extending the interest and data packet

fields. The following fields are added to the interest

packet: [my id, my arrival-time, my departure-time,

parkingSpace location, my position], where “my id”

indicates the identification of the sender vehicle, “my arrival-

time” is the earliest possible arrival time, “my departure-time”

is the latest possible departure time, “parkingSpace location”

specifies the parking lot the driver wants to make the

reservation, and “my position” indicates the sender vehicle

position.

When an intermediate node receives the interest packet

regarding the reservation, the interest name will be included

in the PIT table if there are no matched data in the CS.

The current NDN forwarding daemon has no concept about

sending the same interest name and satisfying each consumer

with different data packets. We introduce the concept of

identity of vehicle interfaces (IVI) by modifying the PIT table

to include the IVI, instead of the incoming interface field. The

IVI entries include the binding of the incoming interface to

the vehicle ID of the requester and a version number. This

binding can be presented as <incoming interface, vehicleID,

version>, where “version” indicates the version number when

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

200International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

a requester vehicle updates its route and sends a new version of

the same interest. This binding helps to send the data packet to

each requester vehicle separately. Once the intermediate node

receives the data packet regarding a reservation request, the

PIT will only satisfy the request with the same vehicleID.

Only the IVI with the same vehicleID will be deleted. All

other IVIs will remain there until the data packets matching

their ID arrive. The PIT entry will be deleted if the data packet

fails to return by the expiration time, or if the requests from

all vehicles are satisfied.
When the reservation request arrives at the fog node

responsible for a parking space, it extracts three tuple <
vid, ra, rd > from the request. vid is the id of the driver, ra
is the arrival time the driver expects to arrive to start parking

the vehicle in the parking lot, and rd is the expected departure

time.
We assume that there are n parking spots in the parking

space, denoted by P = {p1, p2, ..., pn}, as shown in Fig. 2.

The system will allow drivers to reserve for a certain period

of time (e.g., a week, a month, etc.). The y-axis represents the

n parking spots in the parking area. The x-axis indicates the

time. Any reservation (as marked) is an interval on the x-axis.

Fig. 2 Schedules for the Reservation System

The data structure represents the reservations, which is

shown in Fig. 3. Any parking spot pi consists of a list

of reservations. Each reservation is represented by a node

< vid, a, d >, where vid is the identification of the vehicle this

spot is reserved for, a is the arrival time, and d is the departure

time. < a, d > represents an interval of the reservations. There

is no overlap between all reservations for any given spot. To

make the search algorithm for finding a spot that is available

for the duration of a new request, we make sure that the list is

sorted in increasing order based on the arrival time. If a spot

has no reservation, the list is empty, and the pointer from that

spot is NULL.
The system searches for a parking spot that is not reserved

for the period of time < ra, rd >. If the system finds

such an available interval, it reserves the parking spot for

the requested duration, stores the reservation information and

confirms the reservation. The reservation is in the format of

< vid, ra, rd, spot >, where spot is the parking spot reserved

for a vehicle identified by vid. If no such spot is found,

the system will report failure. Fig. 4 shows the detail of the

Fig. 3 Data structure for the reservation application

algorithm for reserving a parking spot. It goes through all the

parking spots. If it finds a spot that has not been reserved

by any vehicle, it will reserve the time interval (lines 2 to

5). Otherwise, it searches through the ordered list of current

reservations. If the departure time is less than the arrival time

of the first reservation for a node, the reservation will be added

to the beginning of the list (lines 6-12). Otherwise, if it can find

in the list two reservations such that the requested arrival time

is after the first reservation’s departure time and the requested

departure time is before the second reservation’s arrival time,

the requested reservation will be put in between (lines 13 to

25). If we still cannot find a parking spot that is available for

the duration of the requested reservation after going through

all the parking spots, it returns failure.

Drivers can also cancel a previous reservation by sending

the tuple < vid, spot, ra, rd > to the fog node in charge of

the parking space. Fig. 5 shows the algorithm for canceling

a reservation. It first checks whether the parking spot number

is valid or not (lines 1 to 3). If not, it will return with a

failure. Otherwise, it searches the list of reservations for that

spot (lines 4 to 18). If it finds a reservation that matches the

user provided, it will delete the reservation from the list and

return with success. If it cannot find the matching reservation,

it will return with a failure (line 19).

E. Simulation Setup

For the simulations, we used ndnSIM (Version 2.8) [17],

which is an ns-3 based NDN simulator. We also used

SUMO [18], a microscopic traffic simulation for urban

mobility, to generate the traffic. We created a map of a part of

the University Campus. The map size is 2000× 2000 meters.

We generated different parking places distributed over the

map. The vehicle speed limit is set to 20 km/h, and we set the

transmission range of the signal of all vehicles to 150 meters.

We utilized the ndnSIM parking applications as a starting

point and implemented our smart parking application. The

parameters for the experimental setup are shown in Table I.

We assume that at each parking area, some parking spaces are

occupied, and others are not.

F. Simulation Results

We evaluated the performance of an NDN-based smart

parking application. Our evaluation consists of two parts. One

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

201International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

Data: the list of Parking Spots P [1..n], the id of the

vehicle making the request vid, request arrival

time ra, request departure time rd
for i = 1 to n do

if P [i] == nil then
nptr = new node(vid, ra, rd);
P [i] = nptr;
return(success, i);

else
cptr = P [i];
if rd < cptr.a then

nptr = new node(vid, ra, rd);
nptr.next = cptr;
P [i] = nptr;
return(success, i);

else
while ((cptr! = nil) and (ra >= cptr.d))

do
qptr = cptr.next;
if ((qptr == nil)||(rd <= qptr.a))

then
nptr = new node(vid, ra, rd);
nptr.next = qptr;
cptr.next = nptr;
return(success, i);

else
cptr = qptr;

end
end

end
end

end
return(failure);

Fig. 4 Algorithm for Making a Reservation

TABLE I
SIMULATION STEP PARAMETERS

Maximum transmission range 150 m
Maximum transmission range of RSU 400 m

Number of vehicles 20, 30, ..., 100, 150
Vehicle speed 20 km/h

Simulation duration 200 ms
MAC type IEEE802.11

is the evaluation of the function for finding parking lots with

available parking spaces. The other is the evaluation of the

parking reservation function of the system.

1) Finding the Availability of Parking Space: We compared

our approach with the original NDN system. There are two

main differences. One is how sensor nodes send the data to

the fog node in charge of the parking space. In the original

NDN, the sensor data will be sent to the fog node only if an

interest message is broadcast from the fog node to the network.

In our push-based model, after initial advertisement from the

fog node, the sensor nodes can periodically push the sensed

data to the fog node without the need to receive further interest

packets.

Data: the list of Parking Spots P [1..n], the id of the

vehicle making the deletion request vid, the

reservation spot, ra, rd, where spot is the

parking spot reserved, ra is arrival time, rd is

the departure time

if ((spot < 1)||(spot > n)) then
return(“Failure: Invalid spot number”);

end
cptr = P [spot];
pptr = nil;
while (cptr) do

if ((cptr.v == vid) and (cptr.a == ra) and
(cptr.d == rd)) then

if (pptr == nil) then
P [spot] = cptr.next;

else
pptr.next = cptr.next;

end
return(“Success: Reservation deleted”);

else
pptr = cptr;
cptr = cptr.next;

end
end
return(“Failure: Reservation not found”);

Fig. 5 Algorithm for Cancelling a Reservation

The other difference is how the vehicles make requests

to find whether there are parking spaces available. In the

original NDN, vehicles do not know any information about

the fog node (an RSU or a selected parked vehicle). They

will broadcast an interest message to request the availability

of parking spaces. In our approach, vehicles are making the

request to a specific geographical area and only those fog

nodes in the geographical area may respond to the availability

request.

We evaluate performance using two metrics, response time

and push overhead.

1) Response time: defined as the time interval from the time

when the vehicle makes the request by sending an interest

packet to the time when it receives the response (data packet).

The number of vehicles varies from 20 to 150.

Fig. 6 shows the response time when the number of vehicles

varies from 20 to 150. We observed that the response time

decreases when the number of vehicles increases. One reason

is the caching effect of NDN because, with more vehicles, we

can have a higher hit ratio at the cache at the intermediate

nodes. The response time of our approach is less than that of

the original NDN. Specifically, it achieves a 16.74% to 20.7%

decrease when the number of vehicles increases from 20 to

150.

2) Push-based model overhead: defined as the total number

of periodic advertisement messages that are broadcast by the

fog node over the total number of pushed data packets to the

fog node. Fig. 7 shows that the proposed push-based model

achieves very low overhead, which decreases gradually as

the number of vehicles increases. Establishing the connection

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

202International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

Fig. 6 Response time for different numbers of vehicles

by advertisement message helps in generating low overhead

because we only need a few interest messages to be sent over

the network. The push-based model outperforms the original

NDN because we set a communication channel between the

fog node and sensors to allow sensors to send periodically

status information to the fog node.

Fig. 7 Overhead caused by the proposed push-model

Reserving a parking space: We also evaluated the

performance of the proposed reservation application by

comparing it with a baseline approach, which allocates a

parking space for a vehicle when it arrives at the parking

lot without any prior reservation. The parameters for the

experimental setup are shown in Table II. Fig. 8 illustrates the

map generated by SUMO. Parking Areas are also identified

on the map.

TABLE II
EXPERIMENT SETUP FOR PARKING SPACES

Parking slots Total parking spaces
P1 25
P2 15
P3 30
P4 100
P5 60
P6 30

We evaluate performance using two metrics, success rate,

and the average time to park.

1) Success rate to find a space: It is defined as the ratio of

the number of vehicles that successfully find a vacant parking

space over the total number of vehicles. Fig. 9 illustrates

that when the number of vehicles increases from 20 to 150,

the success rate to find a space decreases. Our reservation

system has a higher success rate compared with the baseline

approach. In the baseline approach, the driver just drives

to a parking lot, and if the parking lot is full, the task of

finding space is considered failed even if the driver may go to

other parking lots and find space later. When the number of

vehicles is low, the difference between the baseline approach

and our reservation system is small. However, the difference

becomes more obvious when the number of vehicles increases.

We observed the success rates of our approach are 9.53%,

26.98%, and 53.08% higher than the baseline approach when

the numbers of vehicles are 70, 110, and 150, respectively. Our

approach can do better because it allows drivers to reserve a

parking place before the arrival time.

2) Average time needed to park a vehicle: It is defined as

the average time required to find a vacant parking space for

a vehicle. Fig. 10 shows that the number of vehicles has an

effect on the average time to park. As the number of vehicles

increases, the average time needed to park a vehicle increases.

From the figure, we can see that the average time to park for

the reservation approach outperforms is smaller than that of the

baseline approach. More specifically, they are between 40.36%

and 53.31% less than those of the baseline approach.

IV. CONCLUSION

We categorized different types of V-NDN applications

and provided an NDN naming scheme for each type. We

considered a priority method to provide A better service

for some time-sensitive applications. We developed an

NDN-based framework for the smart parking application. A

fog cloud architecture was adopted so that sensor data could

be collected locally and requests could be handled through

distributed fog nodes to reduce the load on a central cloud

server. The cloud aspect allowed us to dynamically set up a

new fog node from a static vehicle to provide service for those

parking spaces without dedicated servers or RSUs. The smart

parking application enables drivers to query about parking lots

with available parking spaces and make a reservation.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

203International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

Fig. 8 SUMO map for a smart parking application

Fig. 9 Success rate of finding a space

Fig. 10 Average time needed to park

REFERENCES

[1] Trista Lin, Herve Rivano, and Frederic Le Mouel. A survey of smart
parking solutions. IEEE transactions on intelligent transportation
systems, 18(12):3229–3253, 2017.

[2] X. Wang and S. Cai. An efficient named-data-networking-based iot cloud
framework. IEEE Internet of Things Journal, 7(4):3453–3461, 2020.

[3] Khaoula Hassoune, Wafaa Dachry, Fouad Moutaouakkil, and Hicham
Medromi. Smart parking systems: A survey. In 2016 11th International
Conference on Intelligent Systems: Theories and Applications (SITA),
2016 11th International Conference on Intelligent Systems: Theories
and Applications (SITA), pages 1–6. IEEE, 2016.

[4] IEEE Electrical Insulation Society Staff Corporate Author. Smart
parking solutions for urban areas. In 2013 IEEE 14th International
Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2013 IEEE 14th International Symposium on ”A World of

Wireless, Mobile and Multimedia Networks” (WoWMoM), pages 1–6,
[Place of publication not identified], 2013. IEEE.

[5] Faheem, S.A. Mahmud, G.M. Khan, M. Rahman, and H. Zafar. A
survey of intelligent car parking system. Journal of Applied Research
and Technology, 11(5):714 – 726, 2013.

[6] Thierry Delot, Nicolas Cenerario, Sergio Ilarri, and Sylvain Lecomte. A
cooperative reservation protocol for parking spaces in vehicular ad hoc
networks. 01 2009.

[7] N Doulamis, E Protopapadakis, and L Lambrinos. Improving service
quality for parking lot users using intelligent parking reservation
policies. pages 1392–1397. IEEE, 2013.

[8] ElMouatezbillah Karbab, Djamel Djenouri, Sahar Boulkaboul, and
Antoine Bagula. Car park management with networked wireless sensors
and active rfid. In Electro/Information Technology (EIT), 2015 IEEE
International Conference on, 2015 IEEE International Conference on
Electro/Information Technology (EIT), pages 373–378. IEEE, 2015.

[9] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.
Fog Computing: A Taxonomy, Survey and Future Directions, pages
103–130. Springer Singapore, Singapore, 2018.

[10] W. Balzano and F. Vitale. Dig-park: A smart parking availability
searching method using v2v/v2i and dgp-class problem. In 2017 31st
International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pages 698–703, 2017.

[11] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen.
Vehicular fog computing: A viewpoint of vehicles as the infrastructures.
IEEE transactions on vehicular technology, 65(6):3860–3873, 2016.

[12] Y. Xiao and Chao Zhu. Vehicular fog computing: Vision and challenges.
In 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pages 6–9, 2017.

[13] Chaogang Tang, Xianglin Wei, Chunsheng Zhu, Wei Chen, and Joel J.
P. C Rodrigues. Towards smart parking based on fog computing. IEEE
access, 6:70172–70185, 2018.

[14] Yi Zhang, Chih-Yu Wang, and Hung-Yu Wei. Parking reservation
auction for parked vehicle assistance in vehicular fog computing. IEEE
transactions on vehicular technology, 68(4):3126–3139, 2019.

[15] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, page 13–16, New York, NY, USA, 2012. Association for Computing
Machinery.

[16] Ivan Stojmenovic, Sheng Wen, Xinyi Huang, and Hao Luan. An
overview of fog computing and its security issues. Concurrency and
Computation: Practice and Experience, 28(10):2991–3005, 2016.

[17] I. Moiseenko S. Mastorakis, A. Afanasyev and L. Zhang. ndnSIM 2:
An updated NDN simulator for NS-3, ndn, technical report ndn-0028,
revision 2, 2016, 2016.

[18] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker. Recent development and applications of SUMO - Simulation
of Urban MObility. International Journal On Advances in Systems and
Measurements, 5(3&4):128–138, December 2012.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:17, No:8, 2023

204International Scholarly and Scientific Research & Innovation 17(8) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:1
7,

 N
o:

8,
 2

02
3

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

21
3.

pd
f

