Search results for: Agricultural wastes
239 A Study of the Garbage Enzyme's Effects in Domestic Wastewater
Authors: Fu E. Tang, Chung W. Tong
Abstract:
“Garbage enzyme", a fermentation product of kitchen waste, water and brown sugar, is claimed in the media as a multipurpose solution for household and agricultural uses. This study assesses the effects of dilutions (5% to 75%) of garbage enzyme in reducing pollutants in domestic wastewater. The pH of the garbage enzyme was found to be 3.5, BOD concentration about 150 mg/L. Test results showed that the garbage enzyme raised the wastewater-s BOD in proportion to its dilution due to its high organic content. For mixtures with more than 10% garbage enzyme, its pH remained acidic after the 5-day digestion period. However, it seems that ammonia nitrogen and phosphorus could be removed by the addition of the garbage enzyme. The most economic solution for removal of ammonia nitrogen and phosphorus was found to be 9%. Further tests are required to understand the removal mechanisms of the ammonia nitrogen and phosphorus.
Keywords: Wastewater treatment, garbage enzyme, wastewater additives, ammonia nitrogen, phosphorus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8619238 Effects of pH, Temperature, Enzyme and Substrate Concentration on Xylooligosaccharides Production
Authors: M. D. S. Siti-Normah, S. Sabiha-Hanim, A. Noraishah
Abstract:
Agricultural residue such as oil palm fronds (OPF) is cheap, widespread and available throughout the year. Hemicelluloses extracted from OPF can be hydrolyzed to their monomers and used in production of xylooligosaccharides (XOs). The objective of the present study was to optimize the enzymatic hydrolysis process of OPF hemicellulose by varying pH, temperature, enzyme and substrate concentration for production of XOs. Hemicelluloses was extracted from OPF by using 3 M potassium hydroxide (KOH) at temperature of 40°C for 4 hrs and stirred at 400 rpm. The hemicellulose was then hydrolyzed using Trichoderma longibrachiatum xylanase at different pH, temperature, enzyme and substrate concentration. XOs were characterized based on reducing sugar determination. The optimum conditions to produced XOs from OPF hemicellulose was obtained at pH 4.6, temperature of 40°C , enzyme concentration of 2 U/mL and 2% substrate concentration. The results established the suitability of oil palm fronds as raw material for production of XOs.Keywords: Hemicellulose, oil palm fronds, Trichoderma longibrachiatum, xylooligosaccharides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3198237 Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River
Authors: Sujana Dhar, Asis Mazumdar
Abstract:
The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.Keywords: Change, future water availability scenario, modeling, SWAT, global warming, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595236 Numerical Simulations of Flood and Inundation in Jobaru River Basin Using Laser Profiler Data
Authors: Hiroto Nakashima, Toshihiro Morita, Koichiro Ohgushi
Abstract:
Laser Profiler (LP) data from aerial laser surveys have been increasingly used as topographical inputs to numerical simulations of flooding and inundation in river basins. LP data has great potential for reproducing topography, but its effective usage has not yet been fully established. In this study, flooding and inundation are simulated numerically using LP data for the Jobaru River basin of Japan’s Saga Plain. The analysis shows that the topography is reproduced satisfactorily in the computational domain with urban and agricultural areas requiring different grid sizes. A 2-D numerical simulation shows that flood flow behavior changes as grid size is varied.
Keywords: LP data, numerical simulation, topological analysis, mesh size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536235 Phylogenetic Characterization of Atrazine-Degrading Bacteria Isolated from Agricultural Soil in Eastern Thailand
Authors: Sawangjit Sopid
Abstract:
In this study sugarcane field soils with a long history of atrazine application in Chachoengsao and Chonburi provinces have been explored for their potential of atrazine biodegradation. For the atrazine degrading bacteria isolation, the soils used in this study named ACS and ACB were inoculated in MS-medium containing atrazine. Six short rod and gram-negative bacterial isolates, which were able to use this herbicide as a sole source of nitrogen, were isolated and named as ACS1, ACB1, ACB3, ACB4, ACB5 and ACB6. From the 16S rDNA nucleotide sequence analysis, the isolated bacteria ACS1 and ACB4 were identified as Rhizobium sp. with 89.1-98.7% nucleotide identity, ACB1 and ACB5 were identified as Stenotrophomonas sp. with 91.0-92.8% nucleotide identity, whereas ACB3 and ACB6 were Klebsiella sp. with 97.4-97.8% nucleotide identity.
Keywords: Atrazine-degrading bacteria, bioremediation, Thai isolate bacteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208234 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes
Authors: Anubha Kaushik, Raman Preet
Abstract:
Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.Keywords: Distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939233 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.
Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4110232 Characterization of Novel Atrazine-Degrading Klebsiella sp. isolated from Thai Agricultural Soil
Authors: Sawangjit Sopid
Abstract:
Atrazine, a herbicide widely used in sugarcane and corn production, is a frequently detected groundwater contaminant. An atrazine-degrading bacterium, strain KB02, was obtained from long-term atrazine-treated sugarcane field soils in Kanchanaburi province of Thailand. Strain KB02 had a rod-to-coccus morphological cycle during growth. Sequence analysis of the PCR product indicated that the 16S rRNA gene in strain KB02 was ranging from 97-98% identical to the same region in Klebsiella sp. Based on biochemical, physiological analysis and 16S rDNA sequence analysis of one representative isolate, strain KB02, the isolates belong to the genus Klebsiella in the family Enterobacteriaceae. Interestingly that the various primers for atzA, B and C failed to amplify genomic DNA of strain KB02. Whereas the expected PCR product of atzA, B and C were obtained from the reference strain, Arthrobacter sp. strain KU001.
Keywords: Atrazine, atz gene, Biodegradation, bioremediation, Klebsiella
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962231 Effects of Oilfield Water Treated by Electroflocculation and Reverse Osmosis in a Typical Brazilian Semiarid Soil
Authors: P. S. A. Souza, M. R. C. Marques, M. M. Rigo, A. A. Cerqueira, J. L. Paiva, F. Merçon, D. V. Perez
Abstract:
Produced water (PW), which is water extracted along with oil, is the largest waste stream in the oil and gas industry. With the proper treatment, this wastewater can be used in agricultural irrigation. This study evaluated the effects the application of PW treated by electroflocculation (EF) and combined electroflocculation-reverse osmosis (EF-RO) on soil salinity and sodification parameters. Excessive sodium levels in PW treated by EF may affect soil structural stability and plant growth, and tends to accumulate in upper layers, displacing the nutrient K to deeper layers of the soil profile. PW treated by EF-RO did not promote salinization and soil sodification, indicating that this combined technique may be a viable alternative for oily water treatment aiming at irrigation use in semiarid regions.
Keywords: Electroflocculation, irrigation, produced water, reverse osmosis, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585230 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China
Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi
Abstract:
BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.
Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655229 Landscape Data Transformation: Categorical Descriptions to Numerical Descriptors
Authors: Dennis A. Apuan
Abstract:
Categorical data based on description of the agricultural landscape imposed some mathematical and analytical limitations. This problem however can be overcome by data transformation through coding scheme and the use of non-parametric multivariate approach. The present study describes data transformation from qualitative to numerical descriptors. In a collection of 103 random soil samples over a 60 hectare field, categorical data were obtained from the following variables: levels of nitrogen, phosphorus, potassium, pH, hue, chroma, value and data on topography, vegetation type, and the presence of rocks. Categorical data were coded, and Spearman-s rho correlation was then calculated using PAST software ver. 1.78 in which Principal Component Analysis was based. Results revealed successful data transformation, generating 1030 quantitative descriptors. Visualization based on the new set of descriptors showed clear differences among sites, and amount of variation was successfully measured. Possible applications of data transformation are discussed.Keywords: data transformation, numerical descriptors, principalcomponent analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507228 The Relationship between Land Use Change and Runoff
Authors: Thanutch Sukwimolseree, Preeyaphorn Kosa
Abstract:
Many problems are occurred in watershed due to human activity and economic development. The purpose is to determine the effects of the land use change on surface runoff using land use map on 1980, 2001 and 2008 and daily weather data during January 1, 1979 to September 30, 2010 applied to SWAT. The results can be presented that the polynomial equation is suitable to display that relationship. These equations for land use in 1980, 2001 and 2008 are consisted of y = -0.0076x5 + 0.1914x4–1.6386x3 + 6.6324x2–8.736x + 7.8023(R2 = 0.9255), y = -0.0298x5 + 0.8794x4 - 9.8056x3 + 51.99x2 - 117.04x + 96.797; (R2 = 0.9186) and y = -0.0277x5 + 0.8132x4 - 8.9598x3 + 46.498x2–101.83x +81.108 (R2 = 0.9006), respectively. Moreover, if the agricultural area is the largest area, it is a sensitive parameter to concern surface runoff.
Keywords: Land use, Runoff, SWAT, Upper Mun River Basin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368227 Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions
Authors: Wanna Saikaew, Pairat Kaewsarn, Wuthikorn Saikaew
Abstract:
The ability of pomelo peel, a natural biosorbent, to remove Cd(II) ions from aqueous solution by biosorption was investigated. The experiments were carried out by batch method at 25 °C. The influence of solution pH, initial cadmium ion concentrations and contact times were evaluated. Cadmium ion removal increased significantly as the pH of the solution increased from pH 1 to pH 5. At pH 5, the cadmium ion removal reached a maximum value. The equilibrium process was described well by the Langmuir isotherm model, with a maximum biosorption capacity of 21.83 mg/g. The biosorption was relatively quick, (approx. 20 min). Biosorption kinetics followed a pseudo-second-order model. The result showed that pomelo peel was effective as a biosorbent for removing cadmium ions from aqueous solution. It is a low cost material that shows potential to be applied in wastewater technology for remediation of heavy metal contamination.
Keywords: Pomelo peel, biosorption, Cadmium ions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3562226 Assessment of Maternal and Embryo-Fetal Toxicity of Copper Oxide Fungicide
Authors: André M. Ornelas, Lise P. Labéjof, Ligia V. Lage dos Santos, Jackson A. Santos
Abstract:
The excessive use of agricultural pesticides and the resulting contamination of food and beds of rivers have been a recurring problem nowadays. Some of these substances can cause changes in endocrine balance and impair reproductive function of human and animal population. In the present study, we evaluated the possible effects of the fungicide cuprous copper oxide Sandoz® on pregnant Wistar rats. They received a daily oral administration of 103 or 3.103 mg/kg of the fungicide from the 6th to the 15th day of gestation. On day 21 of gestation, the maternal and fetal toxicity parameters and indices were determined. The administration of cuprous oxide (Copper Sandoz) in Wistar rats, the period of organogenesis, revealed no evidence of maternal toxicity or embryo at the studied doses.Keywords: Reproductive toxicity, endocrine disrupter, cupper Sandoz®, rodent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826225 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production
Authors: Yehia Manawi, Ahmad Kayvani Fard
Abstract:
Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered.
By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater.
This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.
Keywords: Membrane distillation, desalination, heat recovery, environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964224 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel
Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul
Abstract:
Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.Keywords: Activated carbon, chemical activation, H2SO4, microwave, pomegranate peel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758223 Effect on Nutritional and Antioxidant Properties of Yellow Noodles Substituted with Different Levels of Mangosteen (Garcinia mangostana) Pericarp Powder
Authors: Mardiana Ahamad Zabidi, Nurain Abdul Karim, Nur Shazrinna Sazali
Abstract:
Mangosteen (Garcinia mangostana) pericarp is considered as agricultural waste and not fully utilized in food products. It is widely reported that mangosteen pericarp contains high antioxidant properties. The objective of this study is to develop novel yellow alkaline noodle (YAN) substituted with different levels of mangosteen pericarp powder (MPP). YAN formulation was substituted with different levels of MPP (0%, 5%, 10% and 15%). The effect on nutritional and antioxidant properties was evaluated. Higher substitution levels of MPP resulted in significant increase (p<0.05) of ash, fibre, specific mineral elements and antioxidant properties (total phenolic, total flavonoid, anthocyanin and DPPH) than control sample.Keywords: Yellow alkaline noodle, mangosteen pericarp powder, proximate composition, antioxidant properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690222 Growth Performance and Yield of the Edible White Rot Fungus (Pleurotus ostreatus) on Different Agro Waste Materials
Authors: Terna T. Paul, Iloechuba P. Ngozika
Abstract:
A study was carried out to evaluate the growth and yield performance of Pleurotus ostreatus spawn on different organic substrates in Lafia, Nasarawa State, Nigeria. 50 g each of four different substrates namely; corncobs, rice straw, sugarcane bagasse and sawdust sourced locally from farmlands and processing sites, were amended with 2% calcium carbonate and calcium sulphide and sterilized using three sterilization methods namely; hot water, steam, and lime. Five grams of P. ostreatus spawn were inoculated unto treated substrates, incubated in the dark for 16 days and in light for 19 days at 25 0C for the commencement of pinhead and fruit body formations respectively. Growth and yield parameters such as days to full colonization, days to pinhead formation and days to fruit body formation were recorded. Cap diameter and fresh weight of mature mushrooms were also measured for a total count of four flushes. P. ostreatus spawn grown on sugarcane bagasse recorded the highest mean cap diameter (4.69 cm), highest mean fresh weight (34.68 g), highest biological efficiency (69.37%) and highest production rate (2.83 g per day). Spawn grown on rice straw recorded the least number of days to full substrate colonization (11.00). Spawn grown on corn cobs recorded the least mean number of days to pin head (18.75) and fruiting body formations (20.25). There were no significant differences (P ≤ 0.05) among the evaluated substrates with respect to growth and yield performance of P. ostreatus. Substrates sterilized with hot water supported the highest mean cap diameter (5.64 cm), highest biological efficiency (87.04%) and highest production rate (3.43 g per day) of P. ostreatus. Significant differences (P ≤ 0.05) were observed in cap diameter, fresh weight, biological efficiency and production rates among the evaluated sterilization methods. Hot water sterilization of sugarcane bagasse could be adopted for enhanced yield of oyster mushrooms, especially among indigent farming communities in Nigeria and beyond.
Keywords: Agro wastes, growth, Pleurotus ostreatus, sterilization methods, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850221 Removal of Lead in High Rate Activated Sludge System
Authors: Mamdouh Y. Saleh, Gaber EL Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda
Abstract:
The heavy metals pollution in water, sediments and fish of Lake Manzala affected form the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200 and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L Alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56% respectively.
Keywords: Industrial wastewater, Activated sludge, BOD5, Lead, Alum salt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575220 Agriculture in the Dominican Republic: Competitiveness in a New Trade Regime and Lessons for Cuba
Authors: Sarita D. Jackson
Abstract:
Agriculture remains a sensitive issue during multilateral trade negotiations within the World Trade Organization (WTO). Similar problems arise at the bilateral level, as in the case of trade talks between the United States and the Dominican Republic. The study explores the determinant of agricultural industry competitiveness in the 21st century, particularly in the case of U.S. and Dominican agriculture in each other’s market. Complementing existing scholarship on industry competitiveness, the study argues that trade rules that are established under preferential access programs and trade agreements play a significant role in shaping an industry’s ability to compete. The final analysis is used to offer recommendations to the same sector in Cuba. Cuba currently relies heavily on U.S. food imports and is experiencing the gradual opening of trade with the United States.
Keywords: Agriculture, bargaining, competitiveness, Dominican Republic, DR-CAFTA, free trade agreement, institutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006219 Structural Performance of a Timber-Concrete Bridge Prototype
Authors: Pedro Gutemberg de Alcântara Segundinho, José Antonio Matthiesen, Marcelo Rodrigo Carreira
Abstract:
Timber-concrete structures were recently introduced in Brazil as a viable option for bridge construction on side roads. Binding between timber and concrete is fundamentally important to assure the rigidity and performance of this structural system. The objective of this study was to assess the structural performance of a timber-concrete bridge prototype with width of 170cm and span of 400cm, whose binding among timber beams and concrete slabs was made with metal pins, obtained from CA 50 construction steel bars of 12.5mm diameter. It was possible to conclude, from the results obtained experimentally in laboratory, that the timber-concrete bridge prototype showed a good structural performance. This structural system provides an economical, rapid implementation solution, which may be used on side roads, favoring regional integration and agricultural production flow.
Keywords: Binding, bridge prototype, timber and concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143218 The Potential of Natural Waste (Corn Husk) for Production of Environmental Friendly Biodegradable Film for Seedling
Authors: M. Z. Norashikin, M. Z. Ibrahim
Abstract:
The use of plastic materials in agriculture causes serious hazards to the environment. The introduction of biodegradable materials, which can be disposed directly into the soil can be one possible solution to this problem. In the present research results of experimental tests carried out on biodegradable film fabricated from natural waste (corn husk) are presented. The film was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA) and atomic force microscope (AFM) observation. The film is shown to be readily degraded within 7-9 months under controlled soil conditions, indicating a high biodegradability rate. The film fabricated was use to produce biodegradable pot (BioPot) for seedlings plantation. The introduction and the expanding use of biodegradable materials represent a really promising alternative for enhancing sustainable and environmentally friendly agricultural activities.Keywords: Environment, waste, plastic, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5009217 Estimation of Groundwater Recovery by Recharge in the Agricultural Area
Authors: Tsutomu Ichikawa
Abstract:
The Kumamoto area, Kyushu, Japan has 1,041km2 in area and about 1milion in population. This area is a greatest area in Japan which depends on groundwater for all of drinking water. Quantity of this local groundwater use is about 200MCM during the year. It is understood that the main recharging area of groundwater exist in the rice field zone which have high infiltrate height ahead of 100mm/ day of the irrigated water located in the middle area of the Shira-River Basin. However, by decrease of the paddy-rice planting area by urbanization and an acreage reduction policy, the groundwater income and expenditure turned worse. Then Kumamoto city and four companies expended financial support to increase recharging water to underground by ponded water in the field from 2004. In this paper, the author reported the situation of recovery of groundwater by recharge and estimates the efficiency of recharge by statistical method.Keywords: Groundwater recharge, groundwater level, spring water, paddy field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423216 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067215 The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions
Authors: J. Winkler, S. Chovancová
Abstract:
The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.
Keywords: Weeds, precipitation, tillage, weed infestation forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641214 The Effects of Plant Density and Row Spacing on the Height of Maize Hybrids of Different Vegetation Time and Genotype
Authors: E. Murányi, P. Pepó
Abstract:
The small plot experiment was set in 2013 at the RISFLátókép Experimental Farm of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen, on lime-coated chernozem soil in four replications. The final heights of the maize hybrids were studied at three plant densities (50, 70, and 90 thousand ha-1) and two row spacing (45 and 76cm). During the experiment, we have investigated the development of the final plant heights of five maize hybrids of different vegetation time and genotype: Sarolta, DKC 4025, P 9175, Reseda/P 37M81, and SY Affinity. In the development of the plant heights, the tiller number and the hybrid were the decisive factors. The increasing stock density resulted in significant difference in the plant height values, while the row spacing did not. With the increase of plant density and the length of vegetation time, the heights of the individual plants increased.
Keywords: Maize, plant density, row spacing, plant height, genotype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3691213 Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building
Authors: Marco Raciti Castelli, Sergio Toniato, Ernesto Benini
Abstract:
The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.Keywords: CFD, wind, building, hemicylindrical roof.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003212 Reducing Sugar Production from Durian Peel by Hydrochloric Acid Hydrolysis
Authors: Matura Unhasirikul, Nuanphan Naranong, Woatthichai Narkrugsa
Abstract:
Agricultural waste is mainly composed of cellulose and hemicelluloses which can be converted to sugars. The inexpensive reducing sugar from durian peel was obtained by hydrolysis with HCl concentration at 0.5-2.0% (v/v). The hydrolysis range of time was for 15-60 min when the mixture was autoclaved at 121 °C. The result showed that acid hydrolysis efficiency (AHE) highest to 80.99% at condition is 2.0%concentration for 15 min. Reducing sugar highest to 56.07 g/litre at condition is 2.0% concentration for 45min. Total sugar highest to 59.83 g/litre at condition is 2.0%concentration for 45min, which was not significant (p < 0.05) with condition 2.0% concentration for 30 min and 1.5 % concentration for 45 and 60 min. The increase in concentration increased AHE, reducing sugar and total sugar. The hydrolysis time had no effect on AHE, reducing sugar and total sugar. The maximum reducing sugars of each concentration were at hydrolysis time 45 min .The hydrolysated were analysis by HPLC, the results revealed that the principle of sugar were glucose, fructose and xylose.Keywords: acid hydrolysis efficiency (AHE), reducing sugar, total sugar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260211 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.
Keywords: Soil organic carbon, Soil inorganic carbon, Carbon sequestration, Open burning, Sugarcane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387210 The Effects of Crop Rotation and Nutrient Supply on the Leaf Area Values of Winter Wheat in a Long-Term Experiment
Authors: Gergely Szilágyi, Péter Pepó
Abstract:
Our field experiments were set at the RISF Látókép Experimental Farm of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen, on lime-coated chernozem soil. During our studies, we have investigated two winter wheat varieties (GK Öthalom, Mv Csárdás) of different genotypes. The preceding crops were sunflower and grain maize. We examined wheat leaf area index (LAI) five times during by BBCH scale. We have found that during the different stages of the vegetation period, the LAI values were different depending on the preceding crop, variety and nutrient levels. According to our results, the lowest LAI values were experienced in the control treatment, in the case of both preceding crops. According to our studies we can conclude that crop rotation and fertilizer treatment influenced the studied physiological trait to different extents.
Keywords: Winter wheat, crop rotation, fertilization, genotype, LAI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152