Effects of Oilfield Water Treated by Electroflocculation and Reverse Osmosis in a Typical Brazilian Semiarid Soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Effects of Oilfield Water Treated by Electroflocculation and Reverse Osmosis in a Typical Brazilian Semiarid Soil

Authors: P. S. A. Souza, M. R. C. Marques, M. M. Rigo, A. A. Cerqueira, J. L. Paiva, F. Merçon, D. V. Perez

Abstract:

Produced water (PW), which is water extracted along with oil, is the largest waste stream in the oil and gas industry. With the proper treatment, this wastewater can be used in agricultural irrigation. This study evaluated the effects the application of PW treated by electroflocculation (EF) and combined electroflocculation-reverse osmosis (EF-RO) on soil salinity and sodification parameters. Excessive sodium levels in PW treated by EF may affect soil structural stability and plant growth, and tends to accumulate in upper layers, displacing the nutrient K to deeper layers of the soil profile. PW treated by EF-RO did not promote salinization and soil sodification, indicating that this combined technique may be a viable alternative for oily water treatment aiming at irrigation use in semiarid regions.

Keywords: Electroflocculation, irrigation, produced water, reverse osmosis, soil.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3593174

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583

References:


[1] ANA (Agência Nacional de Águas), Conjuntura dos Recursos Hídricos no Brasil, In: ANA, editor, Brazil, pp. 112, 2011.
[2] WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. UN-Water Publications, 2017.
[3] M, Elgallal, L, Fletcher et al., "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agric Water Manag., vol. 177, no 1, pp 419-431, 2016.
[4] D, Norton-Brandão, S. M. Scherrenberg, J. B. van Lier,"Reclamation of used urban waters for irrigation purposes—a review of treatment technologies," in J EnvironManag., vol. 122, pp. 85–98, 2013.
[5] M. R. Marques, P.S. Souza, M. M. Rigo, et al., "Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.)," Environ. Sci. Pollut., vol. 22, pp.15985-15993, 2015.
[6] J.R. Silva, F, Merçon, L. F.Da Silva, et al., "Evaluation of electrocoagulation as pre-treatment of oil emulsions, folowed by reverse osmosis," J. Water Process Eng., vol. 8, pp. 126–135, 2015.
[7] C. Flannery, T. Dolan, et al., "Assessing the feasibility of using produced water for irrigation in Colorado," Sci Total Environ., vol. 640–641, pp. 619-628, 2018.
[8] P. S. A. Souza, A. A. Cerqueira, M. M. Rigo, et al., "Oilfield water treatment by electrocoagulation–reverse osmosis for agricultural use: effects on germination and early growth characteristics of sunflower," Environ Technol, vol. 38, pp. 1151–1159, 2016.
[9] W. Chen, Z. Hou, L. Wu, et al., "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China,"Agric. Water Manag, vol. 97, pp. 2001–2008, 2010.
[10] M. M. Rahman, D. Hagare, B. Maheshwari “Framework to assess sources controlling soil salinity resulting from irrigation using recycled water: an application of Bayesian Belief Network”. J Clean Prod vol. 105, pp 406–419, 2015.
[11] B. Zeboudji, N. Drouiche, H. Lounici, et al., "The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process," Sep Sci Technol.,vol. 48, pp. 1280-1288, 2013.
[12] N. Katerji, J. W. van Hoorn, A. Hamdy, M. Mastrorilli, "Salt tolerance classification of crops according to soil salinity and to water stress day index," Agric. Water Manag., vol. 43, pp. 99–109, 2000.
[13] A. Vashisth, S. Nagarajan,"Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field," J Plant Physiol, vol. 167, pp.149–156, 2010.
[14] J. R. Da Silva, F. Merçon,C. M. Costa, et al.,"Aplication of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater," Desalin Water Treat. vol. 55, pp. 1-9, 2015.
[15] S. Bunani, E, Yorukoglu,U, Yuksel, et al.," Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation," Desalinationvol. 364, pp. 68–74, 2015.
[16] M. M. Rahman, D, Hagare, B, Maheshwari, "Framework to assess sources controlling soil salinity resulting from irrigation using recycled water: an application of Bayesian Belief Network," J Clean Prod vol. 105, pp. 406–419, 2015.
[17] D. V. Pérez, M. M. Rigo,M. R. Marques (2015) "Fase líquida: a solução do solo, in: R. R. Nunes, M. O. Rezende, (eds.). Recurso Solo: Propriedades e Usos, Editora Cubo, São Carlos, pp. 222-249, 2015.
[18] L. F. Alleoni, J. W. Mello, W. S. Rocha,"Eletroquímica, adsorção e troca iônica no solo," in: Melo V, Alleoni L (eds). Química e Mineralogia do solo: Parte II – Aplicações, SBSC, Viçosa, pp 69-129. 2009.
[19] J.Kohler, J. Hernández, F. Caravaca, A. Roldán, "Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress," Environ Exp Bot., vol. 65, pp. 245-252, 2009.
[20] M. Marques, G. S. Rosa, C. R. Aguiar, S. M. Correia. E. M. Carvalho “Seedling Emergence and Biomass Growth of Oleaginous and Other Tropical Species in Oil Contaminated Soil”, The Open Waste Management Journal. vol. 3, pp. 26-32, 2010.
[21] I. Shainberg, M. J. Singer, "Soil Response to Saline and Sodic Conditions," in Agricultural Salinity Assessment and Management2011, pp.139–167.
[22] F. E. C. Pereira,S. T. Medeiros, S. Torres et al. “Saline stress and temperatures on germination and vigor of Piptadenia moniliformis Benth. Seeds”. Rev. Bras. Eng. Agríc. Ambient., vol.20, no. 7,pp. 649-653, 2016.
[23] M. Melo, H. Schluter, J. Ferreira, R. Magda, A. Júnior, O. Aquino, "Advanced performance evaluation of a reverse osmosis treatment for oilfield produced water aiming reuse,” Desalination vol. 250, pp. 1016–1018, 2010.
[24] M. Dornelas, R. C. Boeira, M. A. Gomes, et al., "Adsorção e lixiviação de tebuthiuron em três tipos de solo," in Rev. Bras. Cienc. Solovol. 25 pp.1053-1061, 2001.
[25] M. F. C. Barros, M. P. F. Fontes, V. H. Alvarez, H. A. Ruiz, "Recuperação de solos afetados por sais pela aplicação de gesso de jazida e calcário no Nordeste do Brasil," inRev bras engagríc ambient. vol. 8, pp. 59-64, 2004.
[26] Embrapa (1999). Manual de Métodos de Análise de Solo. 2nd ed.. Rio de Janeiro, Brazil: Embrapa Serviço Nacional de Levantamento e Conservação de solos.
[27] H. G. Santos, P. K. Jacomine, L. H. Anjos, et al.,"Sistema brasileiro de classificação de solos," (2.ed.). Embrapa Solos, Rio de Janeiro, 2006.
[28] M. Resende, N. Curi, S. B. Resende, G. F. Corrêa, Pedologia – Base para distinção de ambientes. NEPUT, Viçosa, 2002.
[29] G, Sposito, The Chemistry of Soils (2nd ed). Oxford University Press, New York, 2008.
[30] M. R. Ribeiro, M. F. Barros, M. B. Freire, Química dos solos salinos e sódicos. In: Melo V, Alleoni L (eds). Química e Mineralogia do solo: Parte II – Aplicações, SBSC, Viçosa, pp. 449-484, 2009.
[31] Chen W, Hou Z, Wu L et al. “Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China,” Agric Water Manag, vol. 97, no. 12, pp. 2001–2008, 2010.
[32] A. Läuchli, E. Epsteis, "Plant Responses to Saline and Sodic Conditions," Agric. Salin. Assess. Manag.,vol. 71, pp.113–137, 1990.
[33] R. Werle, R. A. Garcia, C. A. Roselen, "Lixiviação de potássio em função da textura e da disponibilidade do nutriente no solo," Rev. Bras. Cienc. Solo vol. 32, pp. 2297-2305, 2008.
[34] D. Dick, P. Bayer, E. Dieckow, C.Bayer, Química da matéria orgânica do solo. In: Melo V, Alleoni L (eds). Química e Mineralogia do solo: Parte II – Aplicações, SBSC, Viçosa, pp. 2-67, 2009.