Search results for: isotherms and kinetics models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2691

Search results for: isotherms and kinetics models

2421 Effects of Roughness Elements on Heat Transfer during Natural Convection

Authors: M. Yousaf, S. Usman

Abstract:

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behaviors were studied using computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar flow in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2.0 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to maximum decrease in the heat transfer as 7% to 17% respectively compared to smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms and streamlines.

Keywords: Natural convection, Rayleigh number, surface roughness, Nusselt number, Lattice Boltzmann Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2420 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model, and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE), all share index data show the effect of increase in the underlying asset value (stock price) on the value of the European Put Option for these models. From the results obtained, we see that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: Equivalent Martingale Measure, European Put Option, Girsanov Theorem, Martingales, Monte Carlo method, option price valuation, option price valuation formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735
2419 A Novel Algorithm for Parsing IFC Models

Authors: Raninder Kaur Dhillon, Mayur Jethwa, Hardeep Singh Rai

Abstract:

Information technology has made a pivotal progress across disparate disciplines, one of which is AEC (Architecture, Engineering and Construction) industry. CAD is a form of computer-aided building modulation that architects, engineers and contractors use to create and view two- and three-dimensional models. The AEC industry also uses building information modeling (BIM), a newer computerized modeling system that can create four-dimensional models; this software can greatly increase productivity in the AEC industry. BIM models generate open source IFC (Industry Foundation Classes) files which aim for interoperability for exchanging information throughout the project lifecycle among various disciplines. The methods developed in previous studies require either an IFC schema or MVD and software applications, such as an IFC model server or a Building Information Modeling (BIM) authoring tool, to extract a partial or complete IFC instance model. This paper proposes an efficient algorithm for extracting a partial and total model from an Industry Foundation Classes (IFC) instance model without an IFC schema or a complete IFC model view definition (MVD).

Keywords: BIM, CAD, IFC, MVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
2418 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37- 55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: Poly(alkenoic acid)s, molecular structures, dental cement, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
2417 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand

Authors: Sudip Kumar Kundu, Charu Singh

Abstract:

As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.

Keywords: Global warming, rainfall, CMIP5, CORDEX, North Western Himalayan region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
2416 Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines

Authors: Zoran Jovanovic, Zoran Masonicic, S. Dragutinovic, Z. Sakota

Abstract:

In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-ε model of turbulence and k-ξ-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled.

Keywords: Automotive flows, flame propagation, combustion modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
2415 Analysis of a Singular Perturbed Synchronous Generator with a Bond Graph Approach

Authors: Gilberto Gonzalez-A, Noe Barrera-G

Abstract:

An analysis of a synchronous generator in a bond graph approach is proposed. This bond graph allows to determine the simplified models of the system by using singular perturbations. Firstly, the nonlinear bond graph of the generator is linearized. Then, the slow and fast state equations by applying singular perturbations are obtained. Also, a bond graph to get the quasi-steady state of the slow dynamic is proposed. In order to verify the effectiveness of the singularly perturbed models, simulation results of the complete system and reduced models are shown.

Keywords: Bond graph modelling, synchronous generator, singular perturbations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
2414 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar

Abstract:

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2413 Effects of Carbonation on the Microstructure and Macro Physical Properties of Cement Mortar

Authors: Son Tung Pham, William Prince

Abstract:

The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the porosity accessible to water, the gas permeability, and thermal conductivity. The conflict between the results of nitrogen porosity and water porosity indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.

Keywords: Carbonation, cement mortar, microstructure, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2412 Currency Exchange Rate Forecasts Using Quantile Regression

Authors: Yuzhi Cai

Abstract:

In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.

Keywords: Exchange rate, quantile regression, combining forecasts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
2411 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)

Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves

Abstract:

Modelling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve more dense and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.

Keywords: 3D Models, Environment, Matching, Pleiades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
2410 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

ABC classification is widely used by managers for inventory control. The classical ABC classification is based on Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to consider other important criteria. From these models, we will consider a specific model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score, based on a normalized average between a good and a bad optimized index, can affect the ABC-item classification. We will focus on items differently assigned to classes and then propose a classification compromise.

Keywords: ABC classification, Multi criteria inventory classification models, ZF-model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
2409 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.

Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
2408 The Hyperbolic Smoothing Approach for Automatic Calibration of Rainfall-Runoff Models

Authors: Adilson Elias Xavier, Otto Corrêa Rotunno Filho, Paulo Canedo de Magalhães

Abstract:

This paper addresses the issue of automatic parameter estimation in conceptual rainfall-runoff (CRR) models. Due to threshold structures commonly occurring in CRR models, the associated mathematical optimization problems have the significant characteristic of being strongly non-differentiable. In order to face this enormous task, the resolution method proposed adopts a smoothing strategy using a special C∞ differentiable class function. The final estimation solution is obtained by solving a sequence of differentiable subproblems which gradually approach the original conceptual problem. The use of this technique, called Hyperbolic Smoothing Method (HSM), makes possible the application of the most powerful minimization algorithms, and also allows for the main difficulties presented by the original CRR problem to be overcome. A set of computational experiments is presented for the purpose of illustrating both the reliability and the efficiency of the proposed approach.

Keywords: Rainfall-runoff models, optimization procedure, automatic parameter calibration, hyperbolic smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
2407 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis

Authors: Holger Keitel

Abstract:

The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.

Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
2406 Simultaneous Saccharification and Fermentation(SSF) of Sugarcane Bagasse - Kinetics and Modeling

Authors: E.Sasikumar, T.Viruthagiri

Abstract:

Simultaneous Saccharification and Fermentation (SSF) of sugarcane bagasse by cellulase and Pachysolen tannophilus MTCC *1077 were investigated in the present study. Important process variables for ethanol production form pretreated bagasse were optimized using Response Surface Methodology (RSM) based on central composite design (CCD) experiments. A 23 five level CCD experiments with central and axial points was used to develop a statistical model for the optimization of process variables such as incubation temperature (25–45°) X1, pH (5.0–7.0) X2 and fermentation time (24–120 h) X3. Data obtained from RSM on ethanol production were subjected to the analysis of variance (ANOVA) and analyzed using a second order polynomial equation and contour plots were used to study the interactions among three relevant variables of the fermentation process. The fermentation experiments were carried out using an online monitored modular fermenter 2L capacity. The processing parameters setup for reaching a maximum response for ethanol production was obtained when applying the optimum values for temperature (32°C), pH (5.6) and fermentation time (110 h). Maximum ethanol concentration (3.36 g/l) was obtained from 50 g/l pretreated sugarcane bagasse at the optimized process conditions in aerobic batch fermentation. Kinetic models such as Monod, Modified Logistic model, Modified Logistic incorporated Leudeking – Piret model and Modified Logistic incorporated Modified Leudeking – Piret model have been evaluated and the constants were predicted.

Keywords: Sugarcane bagasse, ethanol, optimization, Pachysolen tannophilus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
2405 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Data envelopment analysis, Dynamic DEA, Piecewise linear inputs, Piecewise linear outputs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
2404 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
2403 Verification Process of Cylindrical Contact Force Models for Internal Contact Modeling

Authors: Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio

Abstract:

In the numerical solution of the forward dynamics of a multibody system, the positions and velocities of the bodies in the system are obtained first. With the information of the system state variables at each time step, the internal and external forces acting on the system are obtained by appropriate contact force models if the continuous contact method is used instead of a discrete contact method. The local deformation of the bodies in contact, represented by penetration, is used to compute the contact force. The ability and suitability with current cylindrical contact force models to describe the contact between bodies with cylindrical geometries with particular focus on internal contacting geometries involving low clearances and high loads simultaneously is discussed in this paper. A comparative assessment of the performance of each model under analysis for different contact conditions, in particular for very different penetration and clearance values, is presented. It is demonstrated that some models represent a rough approximation to describe the conformal contact between cylindrical geometries because contact forces are underestimated.

Keywords: Clearance joints, Contact mechanics, Contact dynamics, Internal cylindrical contact, Multibody dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
2402 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
2401 Models of Copyrights System

Authors: A. G. Matveev

Abstract:

The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.

Keywords: Copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
2400 Dynamic Analyses for Passenger Volume of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo

Abstract:

Discrete choice model is the most used methodology for studying traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. In this study, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, different models are compared so as to propose the best one. From the results, systematic equations forecast better than single equation do. Models with the external variable, which is oil price, are better than models based on closed system assumption.

Keywords: forecasting, passenger volume, dynamic competition model, external variable, oil price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
2399 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
2398 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2397 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
2396 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2395 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: Design media, kinetic façades, tangible user interface, 3D scanning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2394 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
2393 Financial Analysis Analogies for Software Risk

Authors: Masood Uzzafer

Abstract:

A dynamic software risk assessment model is presented. Analogies between dynamic financial analysis and software risk assessment models are established and based on these analogies it suggested that dynamic risk model for software projects is the way to move forward for the risk assessment of software project. It is shown how software risk assessment change during different phases of a software project and hence requires a dynamic risk assessment model to capture these variations. Further evolution of dynamic financial analysis models is discussed and mapped to the evolution of software risk assessment models.

Keywords: Software Risk Assessment, Software ProjectManagement, Software Cost, Dynamic Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
2392 Application of Adaptive Network-Based Fuzzy Inference System in Macroeconomic Variables Forecasting

Authors: Ε. Giovanis

Abstract:

In this paper we apply an Adaptive Network-Based Fuzzy Inference System (ANFIS) with one input, the dependent variable with one lag, for the forecasting of four macroeconomic variables of US economy, the Gross Domestic Product, the inflation rate, six monthly treasury bills interest rates and unemployment rate. We compare the forecasting performance of ANFIS with those of the widely used linear autoregressive and nonlinear smoothing transition autoregressive (STAR) models. The results are greatly in favour of ANFIS indicating that is an effective tool for macroeconomic forecasting used in academic research and in research and application by the governmental and other institutions

Keywords: Linear models, Macroeconomics, Neuro-Fuzzy, Non-Linear models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792