
JaCoText: A Pretrained Model for Java Code-Text
Generation

Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract—Pretrained transformer-based models have shown high
performance in natural language generation task. However, a new
wave of interest has surged: automatic programming language
generation. This task consists of translating natural language
instructions to a programming code. Despite the fact that well-known
pretrained models on language generation have achieved good
performance in learning programming languages, effort is still needed
in automatic code generation. In this paper, we introduce JaCoText,
a model based on Transformers neural network. It aims to generate
java source code from natural language text. JaCoText leverages
advantages of both natural language and code generation models.
More specifically, we study some findings from the state of the art and
use them to (1) initialize our model from powerful pretrained models,
(2) explore additional pretraining on our java dataset, (3) carry out
experiments combining the unimodal and bimodal data in the training,
and (4) scale the input and output length during the fine-tuning of
the model. Conducted experiments on CONCODE dataset show that
JaCoText achieves new state-of-the-art results.

Keywords—Java code generation, Natural Language Processing,
Sequence-to-sequence Models, Transformers Neural Networks.

I. INTRODUCTION

WHen developing software, programmers use both

natural language (NL) and programming language

(PL). While the latter is the core component of every

project, natural language is used to write documentation (ex:

JavaDoc) to describe different classes, methods and variables.

Documentation is usually written by experts and aims to

provide a comprehensive explanation of the source code to

every person who wants to use/develop the project.

In the last years, the automation of programming code

generation from natural language has been studied using

various techniques [1], [2], [3], [4] of artificial intelligence

(AI). Leveraging AI increases programmers productivity

because it helps them automatically generate code for simple

tasks, while allowing them to tackle only the most difficult

ones.

After the big success of Transformers Neural Network [5],

it has been adapted to many Natural Language Processing

(NLP) tasks such as question answering [6], [7], [8], text

translation [9] and automatic summarization [10], [11]. Some

of the most popular models are GPT [12], [13], BERT [6],

BART [1], and T5 [14]. One of the main factors of success of

these models is that they were trained on very large corpora.

Recently, there has been an increasing interest in programming

code generation. Therefore, the scientific community based its

Jessica, Mahaman Sanoussi, Walid and El Hassane work for Novelis
Research and Innovation Lab, 207 Rue de Bercy, 75012 Paris, France (e-mail:
jlopezespejel@novelis.io, syahaya@novelis.io, wdahhane@novelis.io,
eettifouri@novelis.io).

research on proposing systems that are based on pretrained

transformers. For instance, CodeGPT and GPT-adapted [15]

are based on GPT2 [13], PLBART [1] is based on BART, and

CoTexT [2] follows T5. Note that these models have been

pretrained on bimodal data (containing both PL and NL) and

on unimodal data (containing only PL).

Programming language generation is more challenging than

standard text generation. This is because PLs contain stricter

grammar [16] and syntactic [17] rules. Fig. 1 shows an

example of an input sequence received by our model (in NL),

the output of the model (in PL) and the target code (also called

gold standard or reference code).

Fig. 1 Example of a code generated by our model in comparison with the
corresponding gold standard code

In this paper, we present JaCoText, a pretrained model

based on Transformers [5]. First, we initialize our model from

pretrained weights of CoTexT-1CC and CoTexT-2CC, instead

of performing a training from scratch. Later, we conduct an

additional pretraining step using data that belongs to a specific

programming language (Java in our case). Moreover, unlike

works that based their pretraining on CodeSearchNet [18] such

as CodeBERT [19] and CoTexT [2], we use more java data in

the pretraining stage of our model, as [13] and [14] have shown

that Transformers neural network improves its performance

significantly from increasing the amount of pretraining data.

Furthermore, we carry out experiments to measure the impact

of the input and output sequences length on code generation

task. Finally, we test the unimodal data and study its impact

on the model’s performance. This study is crucial to evaluate

the model in the pretraining stage.

We highlight our main findings in the state-of-the-art below:

• T5 has shown the best performance in language

generation tasks.

• Models initialized from previous pretrained weights

achieve better performance than models trained from

scratch [15], [2].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

100International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

• Models such as SciBERT [20], and BioBERT [21] have

shown the benefits to pretrain a model using data related

to a specific domain.

• Increased data implies better training performance [13],

[14]. This finding is intuitive since a large and diversified

dataset helps improving the model’s representation.

• The input and output sequence length used to train the

model matters in the performance of the model [22].

• The objective learning used during the pretraining

stage gives the model some benefits when learning the

downstream tasks [14], [23], [24].

II. JACOTEXT

In this section, we describe the core component of JaCoText

to achieve state-of-the art results.

A. Fine-tuning

We fine-tune our models based on two criteria:

a) Sequence Length: After analyzing in detail the outputs

generated by previous works, we observed that some of the

code sequences produced by the models were incomplete

compared to the target ones. Consequently, we tokenized the

training and validation sets with SentencePiece model [25]. We

then computed the largest sequence data, and used its length

for both the inputs and the targets.

b) Number of steps: Since we increased the length

of sequences in our model, we increased the number of

fine-tuning steps. According to [14], a way to improve the

model’s performance is by increasing the number of steps in

the training.

We apply both criteria initializing the fine-tuning from

CoTexT checkpoints 2CC and 1CC, respectively. CoTexT-1CC

is pretrained on unimodal data (only code), and CoTexT-2CC

is pretrained on bimodal data (both code and natural language).

Results of these experiments are shown in Table III.

B. Additional Pretraining

Authors of [14] made some important observations that we

support in our work: (1) for some specific tasks, the way

to improve the model’s performance is to pretrain it with

a dataset that belongs to a specific domain, (2) additional

pretraining can improve the performance of a model, (3) a

low number of epochs when pretraining a model leads to

higher scores in generation tasks. Besides, other works such

as CodeGPT-adapted [15] and CoTexT [2] show that models

initialized with pretrained weights achieve better results than

models trained from scratch.

Based on the previous highlighted points, we carried

out additional pretraining on unimodal java data (Fig. 2).

We initialized JaCoText-B-1CC-PL and JaCoText-B-2CC-PL

models from pretrained weights of CoTexT-1CC and

CoTexT-2CC [2], respectively. We trained the previous models

on only-code sequences. We follow the same procedure for

both T5base and T5large. The input of the encoder is a noisy

Java code. The input of the decoder is the original Java code

with one position offset.

Briefly, once the model is initialized from T5 weights

(previously pretrained on C4 dataset), we further pretrain it

on CodeSearchNet and our java dataset. Later, we use the

final checkpoints to initialize the fine-tuning on CONCODE

dataset.

Fig. 2 JaCoText model, best viewed in color

III. EXPERIMENTAL SETUP

A. Architecture

JaCoText uses the same architecture as T5 [14], which is

based on Transformers [5]. On the one hand, T5base consists

of 12 layers in both the encoder and the decoder, with model

dimension of 768 and 12 heads (approx. 220M parameters).

On the other hand, T5large has 24 layers in both the encoder

and the decoder, with model dimension of 1024 and 16 heads

(approx. 770M parameters).

B. Code Generation Dataset

To perform our experiments in Java code generation task,

we used CONCODE [26], a dataset that contains context of a

real world Java programming environment. CONCODE aims

to generate Java member functions that have class member

variables from documentation. Table I describes CONCODE

dataset.

TABLE I
A SUMMARY OF CONCODE DATASET

Size
Category Train Val Test

Text-Code lines 100K 2K 2K

C. Additional Pretraining Dataset

For the additional pretraining, we used our Java dataset.

Originally, it consists of 812, 008; 40, 468, and 51, 210
samples in the training, validation, and test sets, respectively.

We deleted the problematic samples in the three sets (2974 in

the training set, 235 in the validation set, and 161 in the test

set). We use the rest of samples (900, 316) from the three sets

to pretrain our model.

D. Evaluation Metrics

To evaluate our models, we used the three metrics described

below.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

101International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

a) BLEU: [27] is a metric based on n-gram precision

computed between the candidate and the reference(s). N-gram

precision penalizes the model if: (1) there are words that

appear in the candidate but not in any of the references, or

(2) if a word appears more times in the candidate than in the

maximum reference count. However, the metric fails if the

candidate does not have the appropriate length. Following [1]

and [2] we use the corpus-level BLEU score in the code

generation task.

b) CodeBLEU: [28] works via n-gram match, and it

takes into account both the syntactic and semantic matches.

The syntax match is obtained by matching between the

code candidate and code reference(s) sub-trees of abstract

syntax tree (AST). The semantic match considers the data-flow

structure.

c) Exact Match (EM): is the ratio of the number of

predictions that match exactly any of the code reference(s).

E. Baselines

We compare our model with four state-of-the-art

Transformer-based models.

• CodeGPT, CodeGPT-adapted [15] are based on GPT-2

model [13]. The difference between both models is that

CodeGPT is trained from scratch on CodeSearchNet

dataset [18], while CodeGPT-adapted is initialized from

GPT-2 pretrained weights.

• PLBART [1] uses the same architecture than

BARTbase [29]. Additionally, PLBART uses three

noising strategies: token masking, token deletion and

token infilling.

• CoTexT [2] uses the same architecture than T5base. It

is trained on both unimodal and bimodal data using

CodeSearchNet Corpus [18], and GitHub Repositories.

IV. RESULTS AND DISCUSSION

Firstly, we study the performance of T5 model on the

Java generation task. We directly fine-tune on CONCODE

dataset three types of T5: T5base, T5large, and T53B . The

best parameters we used are highlighted in Table III.

TABLE II
RESULTS OBTAINED WHEN FINE-TUNING DIRECTLY FROM T5 MODELS

Parameter Metrics
steps BLEU EM CodeBLEU

T5-base
45000 34.03 20.45 36.73
60000 34.08 20.30 37.00

T5-Large
45000 34.00 20.30 36.98
60000 36.23 21.05 38.84

T5-3B
45000 32.65 21.60 35.47
60000 35.68 21.65 38.37
90000 36.28 22.50 38.97
120000 38.11 22.20 40.81

Best results are in bold.

Table II provides the scores of each type of T5 models

directly after the fine-tuning using CONCODE dataset. In all

cases, the score improves as the number of steps increases.

Unsurprisingly, the most sophisticated T53B model gets the

best results, followed by T5large and T5base, while T53B
takes more time to converge.

Table III provides results obtained when varying the number

of steps and the length of input and output sequences while

fine tuning CoTexT-2CC and CoTexT-1CC checkpoints on

CONCODE dataset. Results show that using 60000 steps

provides better results than using 45000 steps in the fine-tuning

as noted in [2]. In addition, by using the largest code sequence

length, we outperform the BLEU and EM scores obtained

by [2] (highlighted in italic). Results vary slightly, almost

undetectable. However, CoTexT-1CC performs better using

BLEU and CodeBLEU, while CoTexT-2CC achieves better

results using the EM metric.

Varying the number of steps and augmenting the length

of both the input and target in the fine-tuning provide the

first step to improve results on Java code generation task. The

second step consists in using the additional pretraining from

CoTexT weights following [15]. After additional pretraining,

we fine-tune the model using the best parameter values from

Table III.

Table IV provides fine-tuning results after performing the

additional pretraining using our Java dataset. The models are

initialized with JaCoText-B weights when they are trained

following the T5base architecture, and with JaCoText-L

weights when they are trained following T5large. As we

mentioned previously, the additional training using our Java

dataset is initialized from CoTexT weights. However, the

training of JaCoText-L-1CC-PL and JaCoText-L-2CC-PL

models started from T5large weights (previously trained on

C4 [14] dataset). We trained T5large on CodeSearchNet

dataset, and later on our Java dataset during 200, 000 steps

each and using unimodal data (PL only). Finally, we fine-tune

the model on CONCODE dataset for 45, 000 steps.

Results show that JaCoText achieves state-of-the-art results.

Unsurprisingly, JaCoText-L models get the highest scores

using the three metrics, because T5large has a more

sophisticated architecture. In addition, it is noteworthy to

mention that in both architectures, base and large, the best

results are obtained with models that were pretrained on

bimodal data. This finding proves that training models with

bimodal data performs better than with unimodal data.

Finally, Fig. 3 shows the improvements of our model

JaCoText-B-2CC-PL with an additional training using our Java

dataset. For a fair comparison, the three models are fine-tuned

for 60, 000 steps, and they all follow the T5base architecture.

V. RELATED WORK

Early interesting approaches mapped natural language to

source code using regular expressions [31] and database

queries [32], [33]. Most recently, neural networks have

proven their effectiveness to automatically generate source

code from different general-purpose programming languages

like Python [17] and Java [2]. Simultaneously, large-scale

datasets have surged in order to facilitate tackling the problem.

These datasets include CONCODE [26], CONALA [34], and

CodeSearchNet [18].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

102International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

TABLE III
RESULTS WHEN VARYING THE NUMBER OF STEPS, AND THE INPUT AND OUTPUT SEQUENCE LENGTH DURING COTEXT-2CC AND COTEXT-1CC

FINE-TUNING

Parameters CoTexT 2CC / 1CC
input / target

length # steps BLEU EM Code
BLEU

256 / 256 45000 36.51 / 37.40 20.10 / 20.10 39.49 / 40.14
256 / 256 60000 36.22 / 36.00 20.85 / 20.20 38.88 / 38.62
256 / 379 60000 36.60 / 36.45 20.10 / 20.10 39.23 / 39.20
379 / 379 45000 37.08 / 37.33 21.50 / 21.25 39.80 / 39.85
379 / 379 60000 37.46 / 37.66 21.45 / 21.40 39.94 / 40.03
200 / 200 45000 34.61 / 34.79 19.65 / 19.30 37.64 / 37.60
200 / 200 60000 35.17 / 35.23 19.10 / 18.20 38.12 / 38.19

TABLE IV
RESULTS WITH ADDITIONAL PRETRAINING USING OUR JAVA DATASET

Model BLEU EM CodeBLEU
[30] 24.40 10.05 29.46

CodeGPT 28.69 18.25 35.52
CodeGPT-Adp 32.79 20.10 35.98

PLBART 36.69 18.75 38.52
T5-base 32.74 18.65 35.95

CoTexT-2CC 36.51 20.10 39.49
CoTexT-1CC 37.40 20.10 40.14

JaCoText-B-1CC-PL 38.65 21.85 41.19
JaCoText-B-2CC-PL 39.07 22.15 41.53
JaCoText-L-1CC-PL 39.67 22.30 42.19
JaCoText-L-2CC-PL 39.87 22.45 42.49
Best results are in bold.

Fig. 3 Improvement of our model through the additional training

Reference [17] used a BiLSTM encoder, and an RNN

decoder to generate syntactically valid parse trees. Inspired

by the grammar-aware decoder, [26] used Bi-LSTMs encoder

to compute the contextual representations of the NL, and an

LSTM-based RNN decoder with two-step attention mechanism

followed by a copying mechanism to map NL with the source

code.

Recently, models based on Transformers [5] and originally

intended for the generation of natural language have been

of a great benefit for automatic code generation. PLBART

uses the same model architecture as BARTbase [29]. Unlike

BARTbase, PLBART stabilizes the training by adding a

normalization layer on the top of both the encoder and the

decoder, following [35]. Similarly to PLBART, CoTexT (Code

and Text Transfer Transformer) [2] is an encoder-decoder

model, and it follows T5base [14] architecture.

Moreover, encoder-only models such as RoBERTa-(code)

[15] inspired by RoBERTa [36], and decoder-only models like

CodeGPT and CodeGPT-adapted have achieved competitive

results in the state of the art. Similarly to CodeGPT

and CodeGPT-adapted, RoBERTa-(code) is pretrained

on CodeSearchNet dataset. Unlike RoBERTa-(code),

CodeGPT is pretrained on CodeSearchNet from scratch,

and CodeGPT-adapted is pretrained starting from pretrained

weights of GPT-2 [13]. Both CodeGPT and CodeGPT-adapted

follow the same architecture and training objective of GPT-2.

VI. CONCLUSION

We present JaCoText, a set of T5-based [14] pretrained

models designed to generate Java code from natural language.

We evaluate the performance of three architectures: T5base,

T5large, and T53B to generate Java code. We follow the

recommendations proposed by [2], [14], [15] to improve

the performance of T5 model on Java code generation.

Some takeaways from these experiments are: (1) pretraining

the model using a dataset designed to tackle a specific

task is beneficial, (2) additional pretraining can improve the

performance of the model, and (3) using a low number

of epochs in the pretraining helps improving the final

performance.

Our models achieve state-of-the-art results on the Java code

generation task. We prove that, each modification in our

models, such as the additional training, allows JaCoText to

have better comprehension of the java programming language.

In the future, it would be interesting to explore other neural

network models performance, and improve the programming

language syntax through the decoding algorithm. In addition,

since in this paper we focus our work on additional training

using code only, we leave additional training using bimodal

data for future work.

REFERENCES

[1] Wasi Ahmad and Saikat Chakraborty and Baishakhi Ray and Kai-Wei
Chang, Unified Pretraining for Program Understanding and Generation.
Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2021.

[2] Long Phan and Hieu Tran and Daniel Le and Hieu Nguyen and James
Annibal and Alec Peltekian and Yanfang Ye, CoTexT: Multi-task Learning
with Code-Text Transformer. Proceedings of the 1st Workshop on Natural
Language Processing for Programming, 2021.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

103International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

[3] Daya Guo and Shuo Ren and Shuai Lu and Zhangyin Feng and Duyu
Tang and Shujie Liu and Long Zhou and Nan Duan and Alexey
Svyatkovskiy and Shengyu Fu and Michele Tufano and Shao Kun Deng
and Colin B. Clement and Dawn Drain and Neel Sundaresan and Jian
Yin and Daxin Jiang and Ming Zhou, GraphCodeBERT: Pre-training
Code Representations with Data Flow. 9th International Conference on
Learning Representations, 2021.

[4] Xu Frank F. and Alon Uri and Neubig Graham and Hellendoorn Vincent
Josua, A Systematic Evaluation of Large Language Models of Code.
Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming, 2022.

[5] Ashish Vaswani and Noam Shazeer and Niki Parmar and Jakob Uszkoreit
and Llion Jones and Aidan N Gomez and Lukasz Kaiser and Illia
Polosukhin, Attention is All you Need. Advances in Neural Information
Processing Systems, 2017.

[6] Jacob Devlin and Ming-Wei Chang and Kenton Lee and Kristina
Toutanova, BERT: Pretraining of Deep Bidirectional Transformers for
Language Understanding. Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1, 2018.

[7] Daniel Khashabi and Snigdha Chaturvedi and Michael Roth and Shyam
Upadhyay and Dan Roth, Looking Beyond the Surface:A Challenge Set
for Reading Comprehension over Multiple Sentences. NAACL, 2018.

[8] Christopher Clark and Kenton Lee and Ming-Wei Chang and Tom
Kwiatkowski and Michael Collins and Kristina Toutanova, BoolQ:
Exploring the Surprising Difficulty of Natural Yes/No Questions.
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1, 2019.

[9] Yasmin Moslem and Rejwanul Haque and John Kelleher and Andy Way,
Domain-Specific Text Generation for Machine Translation. arXiv, 2022.

[10] Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu,
PEGASUS: Pretraining with Extracted Gap-sentences for Abstractive
Summarization, 2019.

[11] Peter J. Liu and Yu-An Chung and Jie Ren, SummAE: Zero-Shot
Abstractive Text Summarization using Length-Agnostic Auto-Encoders,
2019.

[12] Alec Radford and Karthik Narasimhan, Improving Language
Understanding by Generative Pretraining. 2018.

[13] Alec Radford and Jeffrey Wu and Rewon Child and David Luan and
Dario Amodei and Ilya Sutskever, Language Models are Unsupervised
Multitask Learners. 2019.

[14] Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee
and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and
Peter J. Liu, Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer. Journal of Machine Learning Research, 2020.

[15] Shuai Lu and Daya Guo and Shuo Ren and Junjie Huang and Alexey
Svyatkovskiy and Ambrosio Blanco and Colin B. Clement and Dawn
Drain and Daxin Jiang and Duyu Tang and Ge Li and Lidong Zhou and
Linjun Shou and Long Zhou and Michele Tufano and Ming Gong and
Ming Zhou and Nan Duan and Neel Sundaresan and Shao Kun Deng
and Shengyu Fu and Shujie Liu, CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Generation. CoRR,
2021.

[16] Maxim Rabinovich and Mitchell Stern and Daniel Klein Abstract Syntax
Networks for Code Generation and Semantic Parsing, Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1), 2017.

[17] Pengcheng Yin and Graham Neubig, A Syntactic Neural Model for
General-Purpose Code Generation. Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, Vancouver,
Canada, 2017.

[18] Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis
Allamanis and Marc Brockschmidt, CodeSearchNet Challenge:
Evaluating the State of Semantic Code Search. CoRR, 2019.

[19] Zhangyin Feng and Daya Guo and Duyu Tang and Nan Duan and
Xiaocheng Feng and Ming Gong and Linjun Shou and Bing Qin and
Ting Liu and Daxin Jiang and Ming Zhou, CodeBERT: A Pretrained
Model for Programming and Natural Languages, 2020.

[20] Iz Beltagy and Kyle Lo and Arman Cohan, SciBERT: A Pretrained
Language Model for Scientific Text. Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019.

[21] Jinhyuk Lee and Wonjin Yoon and Sungdong Kim and Donghyeon
Kim and Sunkyu Kim and Chan Ho So and Jaewoo Kang, BioBERT:

a pretrained biomedical language representation model for biomedical
text mining. Bioinformatics, 2020.

[22] Iz Beltagy and Matthew E. Peters and Arman Cohan, Longformer: The
Long-Document Transformer. arXiv:2004.05150, 2020.

[23] Kaitao Song and Xu Tan and Tao Qin and Jianfeng Lu and Tie-Yan
Liu, MASS: Masked Sequence to Sequence Pretraining for Language
Generation. International Conference on Machine Learning, 2019.

[24] Luca Di Liello and Matteo Gabburo and Alessandro Moschitti, Efficient
pretraining objectives for Transformers, 2021.

[25] Taku Kudo and John Richardson, SentencePiece: A simple and
language independent subword tokenizer and detokenizer for Neural Text
Processing. Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2018.

[26] Srinivasan Iyer and Ioannis Konstas and Alvin Cheung and Luke
Zettlemoyer, Mapping Language to Code in Programmatic Context.
EMNLP, 2018.

[27] Kishore Papineni and Salim Roukos and Todd Ward and Wei-Jing
Zhu, Bleu: a Method for Automatic Evaluation of Machine Translation.
Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, 2002.

[28] Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie
Liu and Duyu Tang and M. Zhou and Ambrosio Blanco and Shuai Ma,
CodeBLEU: a Method for Automatic Evaluation of Code Synthesis, 2020.

[29] Mike Lewis and Yinhan Liu and Naman Goyal and Marjan
Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin
Stoyanov and Luke Zettlemoyer, BART: Denoising Sequence-to-Sequence
Pretraining for Natural Language Generation, Translation, and
Comprehension. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020.

[30] Daya Guo and Duyu Tang and Nan Duan and Ming Zhou and Jian Yin,
Coupling Retrieval and Meta-Learning for Context-Dependent Semantic
Parsing. Proceedings of the 57th Conference of the Association for
Computational Linguistics (ACL), 2019.

[31] Nicholas Locascio and Karthik Narasimhan and Eduardo DeLeon and
Nate Kushman and Regina Barzilay, Neural Generation of Regular
Expressions from Natural Language with Minimal Domain Knowledge.
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016.

[32] Xiaojun Xu and Chang Liu and Dawn Song, SQLNet: Generating
Structured Queries From Natural Language Without Reinforcement
Learning, 2017.

[33] Victor Zhong and Caiming Xiong and Richard Socher, Seq2SQL:
Generating Structured Queries from Natural Language using
Reinforcement Learning, 2017.

[34] Pengcheng Yin and Bowen Deng and Edgar Chen and Bogdan
Vasilescu and Graham Neubig, Learning to Mine Aligned Code and
Natural Language Pairs from Stack Overflow. Association for Computing
Machinery, 2018.

[35] Yinhan Liu and Jiatao Gu and Naman Goyal and Xian Li and
Sergey Edunov and Marjan Ghazvininejad and Mike Lewis and
Luke Zettlemoyer, Multilingual Denoising Pretraining for Neural
Machine Translation. Transactions of the Association for Computational
Linguistics, 2020.

[36] Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and
Mandar Joshi and Danqi Chen and Omer Levy and Mike Lewis and
Luke Zettlemoyer and Veselin Stoyanov, RoBERTa: A Robustly Optimized
BERT Pretraining Approach. CoRR, 2019.

Jessica López Espejel is a deep learning researcher
at Novelis Research and Innovation Lab. Her
research is focused on Automatic Code Generation
and Transformers Neural Networks. She holds
a Ph.D. in Natural Language Processing from
Sorbonne Paris Nord University and CEA-LIST
(2021). Email: jlopezespejel@novelis.io.

Mahaman Sanoussi Yahaya Alassan works as a
researcher at Novelis Research and Innovation Lab.
His research focuses on semantic text classification,
information retrieval, named entity extraction. He
obtained his Ph.D. in NLP from Paris Nanterre
University in 2017. Email: syahaya@novelis.io

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

104International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

Walid Dahhane is the CTO and Co-founder of
Novelis. He is an Entreprise architect, a specialist in
microservices and Smart Automation architectures,
and a doctor in AI & NLP. He is in charge of
the IS Urbanisation and Cybersecurity and manages
the activities around the business solutions. Email:
wdahhane@novelis.io

El Hassane Ettifouri holds a Ph.D. in software
engineering and Artificial Intelligence. He is an
Associate and the Head of Novelis Research and
Innovation Lab. His research focuses on Artificial
Intelligence, Natural Language Processing, and
Computer Vision. He was professor in ENSAO
and SupMTI engineering schools, and was also the
founder of the ZeroCouplage Framework. Email:
eettifouri@novelis.io

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:2, 2023

105International Scholarly and Scientific Research & Innovation 17(2) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
2,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
93

5.
pd

f

