%0 Journal Article
	%A Fazıl Gökgöz and  Fahrettin Filiz
	%D 2018
	%J International Journal of Energy and Power Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 138, 2018
	%T Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
	%U https://publications.waset.org/pdf/10009157
	%V 138
	%X Load forecasting has become crucial in recent years
and become popular in forecasting area. Many different power
forecasting models have been tried out for this purpose. Electricity
load forecasting is necessary for energy policies, healthy and reliable
grid systems. Effective power forecasting of renewable energy load
leads the decision makers to minimize the costs of electric utilities
and power plants. Forecasting tools are required that can be used
to predict how much renewable energy can be utilized. The purpose
of this study is to explore the effectiveness of LSTM-based neural
networks for estimating renewable energy loads. In this study, we
present models for predicting renewable energy loads based on
deep neural networks, especially the Long Term Memory (LSTM)
algorithms. Deep learning allows multiple layers of models to learn
representation of data. LSTM algorithms are able to store information
for long periods of time. Deep learning models have recently been
used to forecast the renewable energy sources such as predicting
wind and solar energy power. Historical load and weather information
represent the most important variables for the inputs within the
power forecasting models. The dataset contained power consumption
measurements are gathered between January 2016 and December
2017 with one-hour resolution. Models use publicly available data
from the Turkish Renewable Energy Resources Support Mechanism.
Forecasting studies have been carried out with these data via deep
neural networks approach including LSTM technique for Turkish
electricity markets. 432 different models are created by changing
layers cell count and dropout. The adaptive moment estimation
(ADAM) algorithm is used for training as a gradient-based optimizer
instead of SGD (stochastic gradient). ADAM performed better than
SGD in terms of faster convergence and lower error rates. Models
performance is compared according to MAE (Mean Absolute Error)
and MSE (Mean Squared Error). Best five MAE results out of
432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting
performance of the proposed LSTM models gives successful results
compared to literature searches.
	%P 416 - 420