
 

 
Abstract—The present study focused on the investigation of the 

effects of roughness elements on heat transfer during natural 
convection in a rectangular cavity using numerical technique. 
Roughness elements were introduced on the bottom hot wall with a 
normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic 
behaviors were studied using computational method based on Lattice 
Boltzmann method (LBM). Numerical studies were performed for a 
laminar flow in the range of Rayleigh number (Ra) from 103 to 106 
for a rectangular cavity of aspect ratio (L/H) 2.0 with a fluid of 
Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness 
elements caused a minimum to maximum decrease in the heat 
transfer as 7% to 17% respectively compared to smooth enclosure. 
The results are presented for mean Nusselt number (Nu), isotherms 
and streamlines. 

 
Keywords—Natural convection, Rayleigh number, surface 

roughness, Nusselt number, Lattice Boltzmann Method. 

I. INTRODUCTION 

ATURAL convection induced by buoyancy force is a 
wide ranging heat transfer phenomenon from near to far 

environment [1]. Its importance is further pronounced due to 
its incorporation of passive safety systems in Small Modular 
Reactors (SMRs) and advanced generations of nuclear 
reactors, where it is being used for heat removal systems 
during normal and shutdown phases [2], [3]. It has a range of 
applications: heating and cooling of buildings, solar panels, 
electronic devices, growth of crystal during solidification of 
liquids, and in nuclear industry like nuclear reactor design and 
safety, reactor insulation, decay heat removal and cooling of 
radioactive waste containers etc.[4] 

Buoyancy induced flows are studied in two types of 
enclosures smooth and partitioned. Partitioned enclosure heat 
transfer and transport phenomenon is quite different as 
compared to that of smooth. Whereas, in case of partitioned 
enclosure, heat transfer phenomena depends on nature and size 
of partitions. Some general examples of such cases are rooms, 
buildings with windows, solar energy collectors etc. [1]. Apart 
from smooth enclosures, extensive study has been performed 
on partial enclosures both computationally [4]-[6] and 
experimentally [1], [7], [8]. Bajorek [7] in his experimental 
study reported a decrease in the heat transfer about 10-21% 
due to the presence of adiabatic rectangular roughness 
elements both on bottom and top walls with side walls 
isothermal. Amin [9] described the effects of multiple 
rectangular roughness elements on heat transfer concluding 
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that it causes a decrease and also increase in the rectangular 
enclosures. Das [10] studied the influence of sinusoidal 
bottom wall, its frequency and aspect ratio on the heat transfer 
using finite volume method in a rectangular enclosure.  

Hasan et al. [11] performed numerical study of heat transfer 
and fluid flow due to the presence of wavy wall at uniform 
heat flux of a square enclosure and reported a decrease in the 
heat transfer. Shakerin et al. [8] in his study observed an 
increase in the heat transfer due to the presence of roughness 
element on vertical isothermal wall with adiabatic horizontal 
walls. Oztop [12] in a recent study reported that an isothermal 
partition on adiabatic horizontal wall with side walls as 
isothermal causes a reduction in heat transfer. Shaw et al. [5] 
observed that an adiabatic partition on adiabatic horizontal 
wall with side walls as isothermal also causes a decrease in 
heat transfer by using cubic spline method. Yucel et al. [4] 
mentioned some important studies related to partitioned 
enclosures. 

The purpose of the present work is to study the effects of 
sinusoidal roughness elements on heat transfer in a rectangular 
enclosure. Sinusoidal roughness elements are located on hot 
wall instead of making hot wall as sinusoidal as was done in 
previous studies. The sinusoidal roughness elements are at 
same boundary condition as the corresponding wall. An 
arbitrary amplitude of 0.1 of 08 roughness elements was 
chosen for this study. The computational work has been 
performed by using state of the art computational method 
based on on Bhatnagar-Gross-Krook (BGK) model of Lattice 
Boltzmann Method. Simulations have been performed for a 
fluid of Pr number 1.0 for a laminar natural convection in 
range of Rayleigh Number (Ra) 103 to 106. The paper is 
organized as, in Section II, a brief introduction is provided for 
computational method, Section III presented geometry for 
present study and validation of computational code with 
previous studies, results along with related discussion are 
presented in Section IV, and finally, conclusion has been 
drawn based on the simulation results. 

II. DESCRIPTION OF WORK 

Lattice Boltzmann method has emerged as an alternative to 
traditional numerical methods based on finite volume and 
finite difference techniques [13]. LBM has a significant 
capability to simulate single and two phase flows and heat 
transfer phenomenon, steady as well as transient, buoyancy 
induced flows, condensation and evaporation in complex 
geometries [14]. This method based on kinetic theory of gas, 
was first introduced in 1988 by McNamara et al. to overcome 
problems associated with cellular gas automata [15]. Since 
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that, it has been increasingly used for flow simulation based 
on particle distribution function. Unlike traditional numerical 
methods, LBM solves dynamics of hypothetical particle based 
on Boltzmann equation. LBM has many advantages like its 
ability to simulate complex and porous geometries which does 
not need special treatments, ease of algorithm implementation, 
and no need to solve Laplace equation at every iteration [15]. 
Although LBM has proved to be a promising tool for 
computational study of fluid and heat transfer phenomenon 
but still has some limitations because of its numerical 
instability at highly turbulent flows, but studies are in progress 
to overcome and enhance LBM stability for these flows. A 
detailed study regarding all models for LBM to improve its 
stability for turbulent flows has been explained in the [16]. 

Computational studies to investigate the effects of 
sinusoidal roughness elements on natural convection were 
performed by using computational algorithm based on single 
relaxation time Bhatnagr-Gross and Krook (BGK) model of 
LBM. Two-dimensional simulations for a geometry shown in 
Fig. 1 with corresponding boundary conditions were carried 
out in a laminar flow region for a Newtonian fluid of Pr 
number 1.0. The range of Ra number was investigated from 
103 to 106. The dimensionless number called average Nusselt 
number (Nu), Prandtl number (Pr) and Rayleigh number (Ra) 
were calculated by using following relations. The average Nu 
was calculated along vertical walls and through entire domain 
of the fluid. 
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Lattice Boltzmann method which was originated from 

lattice gas automata has a proven ability to be an alternative to 
traditional numerical schemes based on finite volume, finite 
difference, and finite elements methods [16], [17]. Main 
advantages of LBM are; easy to make algorithm, easy to treat 
complex boundaries, local computing, and no solution of 
Laplace equation at every time step [14]. LBM was first 
introduced in 1980s, and has demonstrated significant 
performance to simulate single and multiphase flow, 
condensation and evaporation, and buoyancy induced flows 
with complex geometries. The fundamental equation which 
simulates Navier-Stokes and energy equations based on 
hypothetical particle given by Boltzmann equation (6);  
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‘Fext’ is external force and ‘τ’ is relaxation time. In the present 
study, nine velocity (D2Q9) and five temperature (D2Q5) 
directions were considered in two-dimensional study of the 
natural convection flow and heat transfer. Boussinesq 
approximations were used to incorporate the effects of 
buoyancy in external force term. All other properties were 
considered constant. The values of relaxation factors for 
Navier-Stokes and energy equations are calculated using 
kinematic viscosity and thermal diffusivity. 

Proper boundary conditions are essential to have accurate 
numerical results and to achieve fast convergence. For 
velocities on wall, bounce back boundary conditions were 
implemented on all walls and solid nodes present in the cavity. 
The isothermal boundary conditions were implemented on hot 
and cold walls respectively as illustrated by Sukop and Thorne 
[14]. The horizontal walls were considered adiabatic or 
insulated.  

Relaxation times ‘τ’ for momentum and energy equations 
are given by following equations respectively. 

 

                     (6) 
 

                   (7) 
 
‘α’ is thermal diffusivity and ‘υ’ is kinematic viscosity of 
fluid. [14] A detailed study and respective recent 
developments in the LBM models are explained in reference 
[14]-[16].  

III. BENCHMARKING 

This part is divided into two parts. In the first part, grid 
independence study was carried out for rectangular cavity as 
shown in Fig. 2. In the second part, code validation is 
performed by comparing present results with previous studies. 
In the present study, the Boussinesq approximations are used 
in order to solve Navier-Stokes equation with buoyancy as 
external force. Density of fluid is assumed as constant in 
continuity equation whereas, it varies with temperature in 
momentum equation [14],[15]. 

 

T                      (8) 
 

and force term introduced in velocity term is calculated as 
 

 reff TTgVV                     (9) 

 
Tref is mean temperature of cold and hot walls.  
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