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Abstract—This paper addresses the issue of automatic parameter 
estimation in conceptual rainfall-runoff (CRR) models. Due to 
threshold structures commonly occurring in CRR models, the 
associated mathematical optimization problems have the significant 
characteristic of being strongly non-differentiable. In order to face this 
enormous task, the resolution method proposed adopts a smoothing 
strategy using a special C∞ differentiable class function. The final 
estimation solution is obtained by solving a sequence of differentiable 
subproblems which gradually approach the original conceptual 
problem. The use of this technique, called Hyperbolic Smoothing 
Method (HSM), makes possible the application of the most powerful 
minimization algorithms, and also allows for the main difficulties 
presented by the original CRR problem to be overcome. A set of 
computational experiments is presented for the purpose of illustrating 
both the reliability and the efficiency of the proposed approach. 

 
Keywords—Rainfall-runoff models, optimization procedure, 

automatic parameter calibration, hyperbolic smoothing method. 

I.  INTRODUCTION 

AINFALL-runoff modeling continues to be a challenge for 
hydrologists. An unsolved problem is the definition of the 

parameters associated with the physical processes. The nature of 
the system operation is inferred from the input and output 
observations, achieved through a model-fitting process. 
Therefore, application of such models requires the identification 
of proper values for the parameters which govern the functions 
that describe the underlying physical system. Calibration is the 
stage in the simulation process where the parameters should be 
identified and estimated. Although the literature has devoted 
much attention to this stage, there is still a clear need for 
improving the analysis on parameter optimization and on 
detection of model structural identifiability problems in CRR 
models.  

This paper focuses on the automatic parameter calibration 
technique, which uses a computerized mathematical 
optimization method to adjust the values of the unknown 
parameters based on changes in the values of a pre-specified 
objective function. These optimization algorithms search the 
parameter space for the extremum of an estimation criterion 

 
Adilson Elias Xavier is with the Systems Engineering and Computer 

Science Program, Alberto Luiz Coimbra Institute for Postgraduate Studies and 
Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio 
de Janeiro, RJ, CEP 21941-914, Brazil (e-mail: adilson@cos.ufrj).  

Otto Corrêa Rotunno Filho is with the Civil Engineering Program, COPPE, 
Federal University of Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-914, 
Brazil (corresponding author, phone: +55 21 39388462; e-mail: 
otto@coc.ufrj.br). 

Paulo Canedo de Magalhães is with the Civil Engineering Program, 
COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-
914, Brazil (e-mail: canedo@hidro.ufrj.br).  

which measures the agreement between observed and simulated 
flows. The computational method introduces higher speed and 
less subjectivity into the calibration process.  

Much research has been devoted to the development and 
improvement of optimization methods applied to rainfall-runoff 
models: [1]-[16], among others.  

Despite all the efforts made, the process of automatic 
calibration still presents serious deficiencies. The major 
contribution of this work is to develop a general deterministic 
approach to solve the mathematical problem of calibrating 
parameters in rainfall-runoff models. It should be noted that the 
approach of the proposed hyperbolic smoothing is also 
applicable to other kind of hydrologic models as well as to other 
practical applications.  

The present paper adopts a scheme, called HSM, applied with 
broad success for solving large nondifferentiable problems in 
general, such as for the min-max problem [17], for the covering 
of plane domains by circles [18], for covering of solid bodies by 
spheres [19], for the minimum sum-of-squares clustering 
illustrated in [20] and [21] and for multisource Fermat-Weber 
location [22].  

Given the previous established framework, this paper is 
presented in the following sequence. First, it addresses the 
general difficulties observed in the optimization of CRR models, 
as previously pointed out by [5] and [13]. In Section III, a typical 
rainfall-runoff model is presented with a threshold-type 
component that produces discontinuities in the first derivatives. 
In Section IV, the smoothing technique introduced bypasses 
these difficulties. It must be emphasized that the overall 
hyperbolic smoothing approach preserves completely the 
conceptual model structure. A practical application is shown in 
Section V by using the SMAP model [23], which is a lumped 
rainfall-runoff model widely used in Brazil in the electric sector. 
Water resources play an essential role in the energy matrix of 
Brazil, which ranks among the top five countries in the world in 
terms of abundance of this kind of resource and where 
hydroelectric power corresponds presently to more than 60% 
[29]. In addition, the SMAP model, due to its simplicity, fits well 
in the framework of showing the applicability of the smoothing 
technique to the calibration of parameters in rainfall-runoff 
models. Subsequently, the resolution of the calibration problem 
and illustrative computational results are presented in Section VI 
and Section VII. Next, the hyperbolic smoothing approach 
performance is analyzed and the main conclusions are drawn. 

II. CHARACTERISTICS OF CRR MODELS 

CRR models are composed of reservoirs with limiting 
thresholds that are activated when the internal levels reach these 
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limits. It is here that the derivative discontinuities originate [11]. 
Reference [13] presented five major characteristics of CRR 
models that generate difficulties in the calibration stage: regions 
of attraction, minor local optima, roughness, sensitivity and 
shape. All features were already considered under the framework 
described by [5]. However, it should be pointed out that regions 
of attraction and minor local optima are the most important 
features and they are related to the local minima challenge. 
Basically, [13] explained that the structure of multiple optima 
exists on at least two scales. At the large scale, there are broad 
regions of attraction into which the sequence of points generated 
by an optimization algorithm may converge. At the small scale, 
each major region of attraction contains a myriad of minor local 
optima. 

III. ORIGIN OF DISCONTINUITIES 

As quoted in [12] and [15], the central difficulty in the 
calibration of CRR models lies precisely in the discontinuities of 
the derivatives. The origin of these discontinuities must be 
analyzed. Reference [11] defined the possible modes of 
operation of a typical rainfall-runoff model and developed their 
arguments based on the threshold structures commonly 
employed in this kind of models. This typical structure of 
threshold values that appears in rainfall-runoff models leads to 
the multiplicity of possible ways of model operation, represented 
in the program code by IF structures. These different modes of 
operation cause the discontinuities in the derivatives of the 
model functions that represent a theoretical restriction to the 
applicability of first order and second order derivative-based 
techniques.  

IV. SMOOTHING TECHNIQUE USED (HSM) 

As previously highlighted, the response surface of CRR 
models contains derivative discontinuities which correspond to 
the presence of thresholds in the corresponding reservoirs. In 
order to overcome this difficulty, a natural idea is to use a 
smoothing approach [24]. Reference [25] suggested two possible 
alternative approximations to a threshold behavior in a real-time 
estimation and forecasting model of river flows. However, such 
suggestions were not used in calibration procedures of rainfall-
runoff models. As [12] states, the proposal made by [25] of 
replacing discontinuities with smooth S-shaped jumps would 
introduce perturbations in the derivatives and not completely 
solve the problem of non-smoothness. On the other hand, the 
present paper examines a continuously differential function that 
properly approximates the function Rt(xt – water level of the 
reservoir at time t, M - threshold), which corresponds to the 
outflow of a typical reservoir, by means of a more convenient 
way. To this end, the following function was adopted:  
 

𝜙ሺ𝑥௧, 𝑀, 𝑑ሻ ൌ ଵ

ଶ
⋅ ቂ𝑥௧ െ 𝑀 ൅ ሾሺ𝑥௧ െ 𝑀ሻଶ ൅ 4 ⋅ 𝑑ଶሿ

భ
మቃ    (1) 

 

The function  ( xt, M, d) presents the following properties: 
a)  (xt, M, d) is asymptotically tangent to the straight lines r1 

(xt, M) = 0 and  r2 (xt, M) = xt - M; 
b) limd0  (xt, M, d) = 0, if xt  M; limd0  (xt, M, d) = xt – M, 

if xt > M; 
c)  (xt, M, d) is continuous and continuously differentiable in 

the variables xt and M; 
d)  (xt, M, d) is convex in xt and M (increasing in xt and 

decreasing in M). 
Property (a) indicates function  (xt, M, d) as a good 

smoothing for Rt(xt, M). Property (b) shows that the difference 
between  (xt, M, d) and Rt (xt, M) may be made as little as 
desired. The variable d introduced in the model represents the 
maximum deviation between the functions  (xt, M, d) and Rt (xt, 
M). Taking that into consideration, full control can be imposed 
over its value, in such a way that the difference between the 
smoothed model and the original model can be established at any 
desired level. Therefore, it is possible to guarantee that the 
model's overall structure remains intact for hydrological 
purposes. Property (c), which refers to first and second 
differentiability, will allow for the use of the optimization 
algorithms that are known to be most powerful. Property (d) 
implies the preservation of fortuitous convex structures. 

V. DESCRIPTION OF AN APPLICATION 

The smoothing technique specified (HSM) was implemented 
in the SMAP (Soil Moisture Accounting Procedure) model [23], 
which is a deterministic CRR model with a structure analogous 
to other models found in the literature. The model simulates the 
land phase of the hydrological cycle by means of three linear 
reservoirs that represent respectively, the surface runoff, the soil 
surface zone and the groundwater flow. 

The flow calculated by the model at each instant is the result 
of the sum of the parts contributed by the surface and 
underground reservoirs. The part corresponding to the rain that 
infiltrates is determined according to an equation of the US Soil 
Conservation Service [26]. The variables are constantly updated 
based on precipitation (RAIN) and potential evapotranspiration 
(EVPT) data and considering the mass conservation principle. 
The objective function (FO) considers the minimization of the 
sum of squares of differences between simulated (QGER) and 
observed streamflows (QOBS). 

The model, in its more simplified version, has six parameters: 
initial losses caused by vegetable retention and soil depressions 
(ABSI); surface recession coefficient (KSUP); soil saturation 
level (NSAT); field capacity (NPER); top soil reservoir recession 
coefficient (KPER); groundwater recession coefficient (KSUB). 
The SMAP model’s equations are given below: 
 

 PEFE RAIN ABSIt t max ,0                (2) 

 

QRES௧ ൌ PEFE೟
మ

ሺPEFE೟ାNSATିLSOL೟షభሻ
        (3) 

  

ttt QRESRAINQSOIL              (4) 

  

 QINF QSOIL EVPTt t t max ,0      (5) 

 

PEV QSOIL QINFt t t1                  (6) 
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LSOL1௧ ൌ LSOL௧ିଵ െ QPER௧ିଵ ൅ QINF௧   (7)  
 

QEXTR௧ ൌ maxሺ0,LSOL1௧ െ NSATሻ      (8) 
 

LSUP௧ ൌ LSUP௧ିଵ െ QSUP௧ିଵ ൅ QRES௧ ൅ QEXTR௧  (9) 
 

QSUP௧ ൌ LSUP௧ ⋅ ሺ1 െ KSUPሻ     (10)  
 

LSOL2௧ ൌ LSOL1௧ െ QEXTR௧       (11)  
 

 














 


t

t
tt

t

LSOL
NSAT

LSOL
PEVEVPT

PEV
2

,
2

1
min2       ሺ12ሻ 

 
LSOL௧ ൌ LSOL2௧ െ PEV2௧        (13)  

 
LLIQ௧ ൌ maxሺ0, LSOL௧ െ NPERሻ       (14) 

 

NSAT

LSOL
KPERLLIQQPER t

tt  
               (15)  

 
LSUB௧ ൌ LSUB௧ିଵ െ QSUB௧ିଵ ൅ QPER௧     (16) 

 
 QSUB௧ ൌ LSUB௧ ⋅ ሺ1 െ KSUBሻ      (17)  

 
QGER௧ ൌ QSUP௧ ൅ QSUB௧       (18)  

 

 FO QGER QOBSt t
t

n

 

 2

1

      (19) 

 
the subindex t indicates the time period. LSUP, LSOL and 
LSUB represent the water level at the surface, top soil and 
groundwater reservoirs, while LSOL1, LSOL2 and LLIQ 
represent auxiliary variables for intermediate levels of the top 
soil reservoir. PEV1 and PEV2 are the two parts of the potential 
evapotranspiration and QRES, QSOIL, QINF, QEXTR, QPER, 
QSUP and QSUB correspond to different component 
streamflows of the model. 

VI. RESOLUTION OF THE PROBLEM 

For the validation of the proposed methodology, it was 
decided to use series of synthetic flows generated by the model 
itself from daily rain and potential evapotranspiration series for 
the Fartura river watershed, Sao Paulo state, Brazil. In this way, 
it was possible to isolate, from the analysis, the problems of the 
natural errors of input data and the natural imperfections of the 
hydrological model; that is, any divergencies between the series 
of flows generated and observed are exclusively due to the 
process of calibration. 

The objective function chosen was the minimization of the 
sum of the squares of the differences between the observed flows 
and those generated by the model. The record length for the 
input was 5 years and the time step 1 day, making a total of 1826 
observations, which means a problem with 31042 variables. 

The five derivative discontinuities existing in the SMAP 
model are produced by max and min functions in (2), (5), (8), 
(12) and (14). Thus, the gradient calculation would imply the 

presence of an IF statement for each expression. However, by 
using the hyperbolic smoothing approach, described in Section 
IV, these expressions are replaced by the following completely 
differentiable ones:  

 
PEFE௧ ൌ 𝜙ሺRAIN௧,ABSI, 𝑑ሻ           (20)  

 
QINF௧ ൌ 𝜙ሺQSOIL௧, EVPT௧, 𝑑ሻ           (21)  

 
QEXTR௧ ൌ 𝜙ሺLSOL1௧,NSAT, 𝑑ሻ        (22)  

 

 




















d
NSAT

LSOL
PEVEVPT

LSOL

LSOLPEV t
tt

t

tt ,
2

1

,2

22    (23) 

 
LLIQ௧ ൌ 𝜙ሺLSOL௧,NPER, 𝑑ሻ       (24) 

  
and therefore a single C∞ differentiable path replaces the 
operational paths derived from the sequence of the five IF's. 
Moreover, exact analytical first derivatives of the objective 
function with respect to parameters can be trivially calculated 
through elementary calculus rules. Calibration thus consisted of 
resolving a completely differentiable nonlinear programming 
problem. Nevertheless, it is desirable to include constraints in the 
space of parameters to place them always within the domains of 
physical meaning, and also to avoid the occurrence of unpleasant 
divergent numerical sequences. Thus, the recession coefficients 
(KSUP, KPER, KSUB) were put into the interval [0,1] and for 
the other parameters lower bounds were set to zero and specific 
safe upper bounds were defined. It was therefore a question of 
solving a constrained nonlinear programming problem. 

The solution to the constrained optimization problem was 
performed by using the hyperbolic penalty method [27], which 
resorts to the solution of a sequence of unconstrained penalized 
subproblems. Each subproblem was solved by using the routine 
VA13C from Harwell Library, which implements a Quasi-
Newton method with BFGS updating, described in many 
sources, such as in [28]. Similar to other penalty methods, the 
sequence of penalized subproblems is generated by the 
controlled variation of an external penalty parameter in a 
convergent sequence to zero. In the above description of the 
hyperbolic smoothing technique, it was shown that this also is a 
function of an external smoothing parameter, d, which provokes 
a concrete alteration of the original CRR model. This difficulty is 
definitively overcome through linear coupling of the smoothing 
parameter to the penalty parameter that goes to zero. In this way, 
the sequence of values of the smoothing parameter will also 
converge to zero and the sequence of smoothed CRR models 
will converge to the original model. Conceptual model structure 
is maintained throughout. 

VII. RESULTS FOR PARAMETERS CALIBRATION 

In order to demonstrate the performance of the proposed 
hyperbolic smoothing technique, it is presented the 
computational results for the SMAP model with six-parameter 
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calibration. The calibration sample was established based on a 
known solution with the parameters assuming the following 
values: ABSI = 5.0; KSUP = 0.70; NSAT = 300.0; NPER = 
90.0; KPER = 0.008 and KSUB = 0.95. Six calibration runs were 
performed, where the complete parameter set was perturbed 
10%, 20%, 30%, 40%, 50% and 75%. A brief synthesis of the 
results is given below. 

First, in Table I, a typical sequence of points generated by the 
HSM method in solving the 10% deviation is shown. The 
corresponding columns respectively, present; the name of the 
parameter, the initial point, the known solution, the initial and 
final points obtained by the variation of the smoothing parameter 
d, from an initial value 1000 until 0.001. The last but one row 
presents the objective function values, while the last row depicts 
the small number of function and gradient evaluations. 

It was identified a linear convergence of the sequence of 
points generated by the algorithm to the true solution with the 
controlled linear decreasing of parameter d (1000, 100,10, 1,0.1, 
0.01, 0.001).   

 
TABLE I 

INITIAL, TRUE AND FINAL VALUES FOR 10% INITIAL PERTURBATION 

Parameter 
Initial Value 

(10%) 
True Value d = 1000 d = 0.001 

ABSI 4.50000 5.00000 4.73176 5.00000 

KSUP 0.63000 0.70000 0.68397 0.70000 

NSAT 270.000 300.000 311.227 300.000 

NPER 81.0000 90.0000 97.0440 90.0000 

KPER 0.00720 0.00800 0.00742 0.00800 

KSUB 0.85500 0.95000 0.95460 0.95000 

Objective value 0.29E4 0.00000 0.49E2 0.15E-7 
Function/Gradient 

Evaluations 
- - 135 51 

 

Table II presents the solutions produced by HSM after 7 
similar iterations where the parameter set was perturbed 10%, 
30%, and 50%. For each level of perturbation, it is only shown 
the last solution produced with smoothing parameter d equal to 
0.001. 

 
TABLE II 

TRUE AND FINAL VALUES FOR 10%, 30% AND 50% INITIAL PERTURBATION 

Parameter 
True 
Value 

Solution 
10%

Solution 
30% 

Solution 
50%

ABSI 5.00000 5.00000 5.00000 5.00000 

KSUP 0.70000 0.70000 0.70000 0.70000 

NSAT 300.000 300.000 300.000 300.000 

NPER 90.0000 90.0000 90.0000 90.0000 

KPER 0.00800 0.00800 0.00800 0.00800 

KSUB 0.95000 0.95000 0.95000 0.95000 

Objective value 0.00000 0.15E-7 0.15E-7 0.15E-7 

 

Based on the analysis of the results presented in Tables I 
and II, first, it is possible to verify the almost perfect 
performance of the HSM. The convergence rate of the six 
parameters and of the objective function presents a linear 
behavior with the smoothing parameter d.  

VIII.  THE SMOOTHING PROCEDURE 

Many authors [5]-[15] have reported that due to the effect of 

the discontinuities of the derivatives, the high degree of non-
linearity, the presence of extensive valleys with low declivity 
resulting from the interaction between the parameters, and the 
existence of local minima, automatic calibration of CRR models 
becomes an extremely difficult task. The alternative considered 
in this paper was to resort to smoothing, in order to improve the 
structural characteristics of the problem and allow the use of 
more robust optimization algorithms and, by including a set of 
constraints, maintain the physical meaning of the parameters. 
The almost perfect convergence for the solution, whatever the 
initial point, in contrast to the experience registered in the 
literature, suggests the appropriateness of the smoothing 
approach and of the other procedures implemented.  

The reason for the success seems to result from the total or 
partial elimination of the difficulties of automatic calibration of 
CRR models referred to in Section II, following the remarks 
made by [5] and [13].  

IX. CONCLUSION 

The authors have wishful expectation that the techniques 
presented herein may just as successfully be used in other CRR 
with different structural functions, as well as in other conceptual 
models in different environmental areas such as groundwater 
modeling and atmospheric sciences. However, it must be 
remembered that the SMAP calibration problem is a global 
optimization problem with several local minima. Therefore, 
HSM does not offer the guarantee of obtaining a global optimum 
point, although it has been possible to observe that the present 
computational implementation produced such global points. 

Summing up, the option taken in this paper was not to attempt 
to discover an appropriate algorithm to perform calibration of 
CRR models, but rather to transform the model by preserving its 
conceptual structure so as to provide the necessary conditions to 
enable the existing robust algorithms to work properly.  
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