**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**960

# Search results for: Bond graph modelling

##### 960 Analysis of a Singular Perturbed Synchronous Generator with a Bond Graph Approach

**Authors:**
Gilberto Gonzalez-A,
Noe Barrera-G

**Abstract:**

**Keywords:**
Bond graph modelling,
synchronous generator,
singular perturbations

##### 959 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

**Authors:**
Gilberto Gonzalez-A,
Dunia Nuñez-P

**Abstract:**

**Keywords:**
Bond graph,
electrical transformer,
magnetic
circuits,
nonlinear saturation.

##### 958 Analysis of Electrical Networks Using Phasors: A Bond Graph Approach

**Authors:**
Israel Núñez-Hernández,
Peter C. Breedveld,
Paul B. T. Weustink,
Gilberto Gonzalez-A

**Abstract:**

This paper proposes a phasor representation of electrical networks by using bond graph methodology. A so-called phasor bond graph is built up by means of two-dimensional bonds, which represent the complex plane. Impedances or admittances are used instead of the standard bond graph elements. A procedure to obtain the steady-state values from a phasor bond graph model is presented. Besides the presentation of a phasor bond graph library in SIDOPS code, also an application example is discussed.

**Keywords:**
Bond graphs,
phasor theory,
steady-state,
complex
power,
electrical networks.

##### 957 Analysis of an Electrical Transformer: A Bond Graph Approach

**Authors:**
Gilberto Gonzalez-A

**Abstract:**

**Keywords:**
Bond graph,
electrical transformer,
nonlinear
saturation

##### 956 Analysis of a Hydroelectric Plant connected to Electrical Power System in the Physical Domain

**Authors:**
Gilberto Gonzalez-A,
Octavio Barriga

**Abstract:**

**Keywords:**
Bond graph,
hydraulic plant,
steady state.

##### 955 Model Inversion of a Two Degrees of Freedom Linearized PUMA from Bicausal Bond Graphs

**Authors:**
Gilberto Gonzalez-A,
Ignacio Rodríguez- A.,
Dunia Nuñez-P

**Abstract:**

**Keywords:**
Bond graph,
system inversion,
bicausality,
PUMA
manipulator

##### 954 Phasor Analysis of a Synchronous Generator: A Bond Graph Approach

**Authors:**
Israel Núñez-Hernández,
Peter C. Breedveld,
Paul B. T. Weustink,
Gilberto Gonzalez-A

**Abstract:**

This paper presents the use of phasor bond graphs to obtain the steady-state behavior of a synchronous generator. The phasor bond graph elements are built using 2D multibonds, which represent the real and imaginary part of the phasor. The dynamic bond graph model of a salient-pole synchronous generator is showed, and verified viz. a sudden short-circuit test. The reduction of the dynamic model into a phasor representation is described. The previous test is executed on the phasor bond graph model, and its steady-state values are compared with the dynamic response. Besides, the widely used power (torque)-angle curves are obtained by means of the phasor bond graph model, to test the usefulness of this model.

**Keywords:**
Bond graphs,
complex power,
phasors,
synchronous
generator,
short-circuit,
open-circuit,
power-angle curve.

##### 953 Steady State of Passive and Active Suspensions in the Physical Domain

**Authors:**
Gilberto Gonzalez-A,
Jorge Madrigal

**Abstract:**

**Keywords:**
Bond graph,
steady state,
active suspension.

##### 952 A NonLinear Observer of an Electrical Transformer: A Bond Graph Approach

**Authors:**
Gilberto Gonzalez-A ,
Israel Nuñez

**Abstract:**

**Keywords:**
Bond graph,
nonlinear observer,
electrical transformer,
nonlinear saturation.

##### 951 Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System

**Authors:**
Mutuku Muvengei,
John Kihiu

**Abstract:**

**Keywords:**
Bond graphs,
Inter-actuator interactions,
Valvecontrolledhydraulic cylinder.

##### 950 Observers Design for Systems Modelled by Bond Graphs with Multivariable Monotone Nonlinearities

**Authors:**
Gilberto Gonzalez-A,
Gerardo Jaimes-A

**Abstract:**

**Keywords:**
Bond graph,
nonlinear observer,
electrical
transformer,
nonlinear saturation

##### 949 Bond Graph and Bayesian Networks for Reliable Diagnosis

**Authors:**
Abdelaziz Zaidi,
Belkacem Ould Bouamama,
Moncef Tagina

**Abstract:**

**Keywords:**
Redundancy relations,
decision-making,
Bond Graph,
reliability,
Bayesian Networks.

##### 948 A Graphical Environment for Petri Nets INA Tool Based on Meta-Modelling and Graph Grammars

**Authors:**
Raida El Mansouri,
Elhillali Kerkouche,
Allaoua Chaoui

**Abstract:**

**Keywords:**
INA,
Meta-modelling,
Graph Grammars,
AToM3,
Automatic Code Generation.

##### 947 Dynamic Modeling of Underplateform Damper used in Turbomachinery

**Authors:**
Vikas Rastogi,
Vipan Kumar,
Loveleen Kumar Bhagi

**Abstract:**

**Keywords:**
Turbine blade vibrations,
Friction dampers,
Timoshenko Beam,
Bond graph modeling.

##### 946 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

**Authors:**
Maruful H. Mazumder,
Raymond I. Gilbert

**Abstract:**

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

**Keywords:**
Bond stress,
Development length,
Lapped splice length,
Reinforced concrete.

##### 945 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph

**Authors:**
A. Badoud,
M. Khemliche,
S. Latreche

**Abstract:**

**Keywords:**
Bond Graph,
Modeling,
Simulation,
Monitoring,
Analytical Redundancy Relations,
Pressurized Water Reactor,
Directed Graph.

##### 944 Bond Graph Modeling of Mechanical Dynamics of an Excavator for Hydraulic System Analysis and Design

**Authors:**
Mutuku Muvengei,
John Kihiu

**Abstract:**

**Keywords:**
Actuators,
bond graphs,
inverse dynamics,
recursive
equations,
quintic polynomial trajectory.

##### 943 Concurrency in Web Access Patterns Mining

**Authors:**
Jing Lu,
Malcolm Keech,
Weiru Chen

**Abstract:**

**Keywords:**
concurrent access patterns (CAP),
CAP mining and modelling,
CAP-Graph,
web access patterns (WAP),
WAP-Graph,
Web usage mining.

##### 942 Modeling and Simulation of Underwater Flexible Manipulator as Raleigh Beam Using Bond Graph

**Authors:**
Sumit Kumar,
Sunil Kumar,
Chandan Deep Singh

**Abstract:**

**Keywords:**
Bond graph modeling,
dynamics. modeling,
Rayleigh beam,
underwater robot.

##### 941 A Study on Bond Strength of Geopolymer Concrete

**Authors:**
Rama Seshu Doguparti

**Abstract:**

**Keywords:**
Geo polymer,
Concrete,
Bond Strength,
Behaviour.

##### 940 Efficient Filtering of Graph Based Data Using Graph Partitioning

**Authors:**
Nileshkumar Vaishnav,
Aditya Tatu

**Abstract:**

**Keywords:**
Graph signal processing,
graph partitioning,
inverse
filtering on graphs,
algebraic signal processing.

##### 939 Using Spectral Vectors and M-Tree for Graph Clustering and Searching in Graph Databases of Protein Structures

**Authors:**
Do Phuc,
Nguyen Thi Kim Phung

**Abstract:**

**Keywords:**
Eigenvalues,
m-tree,
graph database,
protein
structure,
spectra graph theory.

##### 938 Analytical Modelling of Average Bond Stress within the Anchorage of Tensile Reinforcing Bars in Reinforced Concrete Members

**Authors:**
Maruful H. Mazumder,
Raymond I. Gilbert,
Zhen- T. Chang

**Abstract:**

**Keywords:**
Anchorage,
Bond stress,
Development length,
Reinforced concrete.

##### 937 A Neighborhood Condition for Fractional k-deleted Graphs

**Authors:**
Sizhong Zhou,
Hongxia Liu

**Abstract:**

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

**Keywords:**
Graph,
minimum degree,
neighborhood union,
fractional k-factor,
fractional k-deleted graph.

##### 936 A Comprehensive model for developing of Steer-By-Wire System

**Authors:**
Reza Kazemi ,
Iman Mousavinejad

**Abstract:**

Steer-By-Wire ( SBW ) has several advantages of packaging flexibility , advanced vehicle control system ,and superior performance . SBW has no mechanical linkage between the steering gear and the steering column. It is possible to control the steering wheel and the front-wheel steering independently. SBW system is composed of two motors controlled by ECU. One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability and stability. This paper shows a new approach at modeling of SBW system by Bond Graph theory. The mechanical parts , the steering wheel motor and the front wheel motor will be modeled by this theory. The work in the paper will help to guide further researches on control algorithm of the SBW system .

**Keywords:**
Steer-By-Wire ( SBW ),
Bond Graph theory,
Electronic-Control-Unit ( ECU ) ,
Modeling

##### 935 The Extremal Graph with the Largest Merrifield-Simmons Index of (n, n + 2)-graphs

**Authors:**
M. S. Haghighat,
A. Dolati,
M. Tabari,
E. Mohseni

**Abstract:**

The Merrifield-Simmons index of a graph G is defined as the total number of its independent sets. A (n, n + 2)-graph is a connected simple graph with n vertices and n + 2 edges. In this paper we characterize the (n, n+2)-graph with the largest Merrifield- Simmons index. We show that its Merrifield-Simmons index i.e. the upper bound of the Merrifield-Simmons index of the (n, n+2)-graphs is 9 × 2n-5 +1 for n ≥ 5.

**Keywords:**
Merrifield-Simmons index,
(n,
n+2)-graph.

##### 934 N-Sun Decomposition of Complete, Complete Bipartite and Some Harary Graphs

**Authors:**
R. Anitha,
R. S. Lekshmi

**Abstract:**

**Keywords:**
Decomposition,
Hamilton cycle,
n-sun graph,
perfect matching,
spanning tree.

##### 933 The Diameter of an Interval Graph is Twice of its Radius

**Authors:**
Tarasankar Pramanik,
Sukumar Mondal,
Madhumangal Pal

**Abstract:**

In an interval graph G = (V,E) the distance between two vertices u, v is de£ned as the smallest number of edges in a path joining u and v. The eccentricity of a vertex v is the maximum among distances from all other vertices of V . The diameter (δ) and radius (ρ) of the graph G is respectively the maximum and minimum among all the eccentricities of G. The center of the graph G is the set C(G) of vertices with eccentricity ρ. In this context our aim is to establish the relation ρ = δ 2 for an interval graph and to determine the center of it.

**Keywords:**
Interval graph,
interval tree,
radius,
center.

##### 932 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber

**Authors:**
Abbas Vahedian,
Rijun Shrestha,
Keith Crews

**Abstract:**

**Keywords:**
FRP,
single shear test,
bond thickness,
bond
strength.

##### 931 Completion Number of a Graph

**Authors:**
Sudhakar G

**Abstract:**

In this paper a new concept of partial complement of a graph G is introduced and using the same a new graph parameter, called completion number of a graph G, denoted by c(G) is defined. Some basic properties of graph parameter, completion number, are studied and upperbounds for completion number of classes of graphs are obtained , the paper includes the characterization also.

**Keywords:**
Completion Number,
Maximum Independent subset,
Partial complements,
Partial self complementary