Search results for: analog front end
332 System Concept for Low Analog Complexity and High-IF Superposition Heterodyne Receivers
Authors: Marko Mailand, Hans-Joachim Jentschel
Abstract:
For today-s and future wireless communications applications, more and more data traffic has to be transmitted with growing speed and quality demands. The analog front-end of any mobile device has to cope with very hard specifications regardless which transmission standard has to be supported. State-of-the-art analog front-end implementations are reaching the limit of technical feasibility. For that reason, alternative front-end architectures could support a continuing development of mobile communications e.g., six-port-based front-ends [1], [2]. In this article we propose an analog front-end with high intermediate frequency and which utilizes additive mixing instead of multiplicative mixing. The system architecture is presented and several spurious effects as well as their influence on the system dimensioning are discussed. Furthermore, several issues concerning the technical feasibility are provided and some simulation results are discussed which show the principle functionality of the proposed superposition heterodyne receiver.Keywords: receivers, analog front-end, heterodyning, self-mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444331 Data-driven ASIC for Multichannel Sensors
Authors: Eduard Atkin, Alexander Klyuev, Vitaly Shumikhin
Abstract:
An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.
Keywords: Data-driven architecture, derandomizer, multichannel sensor readout
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423330 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications
Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je
Abstract:
We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for a three dimensional ultrasound bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface a 2-D array of high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together. Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².
Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8184329 Low Power Capacitance-to-Voltage Converter for Magnetometer Interface IC
Authors: Dipankar Nag, Choe Andrew Kunil, Kevin Chai Tshun Chuan, Minkyu Je
Abstract:
This paper presents the design and implementation of a fully integrated Capacitance-to-Voltage Converter (CVC) as the analog front-end for magnetometer interface IC. The application demands very low power solution operating in the frequency of around 20 KHz. The design adapts low power architecture to create low noise electronic interface for Capacitive Micro-machined Lorentz force magnetometer sensor. Using a 0.18-μm CMOS process, simulation results of this interface IC show that the proposed CVC can provide 33 dB closed loop gain, 20 nV/√Hz input referred noise at 20 KHz, while consuming 65 μA current from 1.8-V supply.
Keywords: Analog front end, Capacitance-to-Voltage Converter, Magnetometer, MEMS, Recycling Folded Cascode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3689328 Transimpedance Amplifier for Integrated 3D Ultrasound Biomicroscope Applications
Authors: Xiwei Huang, Hyouk-Kyu Cha, Dongning Zhao, Bin Guo, Minkyu Je, Hao Yu
Abstract:
This paper presents the design and implementation of a fully integrated transimpedance amplifier (TIA) as the analog frontend receiver for Capacitive Micromachined Ultrasound Transducers (CMUTs) for ultrasound biomicroscope imaging application. The amplifier is designed to amplify the received signals from 17.5MHz to 52.5MHz with a center frequency of 35MHz. The TIA was fabricated in GF 0.18μm 1P6M 30V high voltage process. The measurement results show that the designed amplifier can reach a transimpedance gain of 61.08dBΩ and operating frequency from 17.5MHz to 100MHz with 1VP-P output voltage under 6V power supply.
Keywords: 3D ultrasound biomicroscope, analog front-end, transimpedance amplifier, CMUT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722327 Analog Circuit Design using Genetic Algorithm: Modified
Authors: Amod P. Vaze
Abstract:
Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.
Keywords: Genetic algorithm, analog circuits, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293326 Implemented 5-bit 125-MS/s Successive Approximation Register ADC on FPGA
Authors: S. Heydarzadeh, A. Kadivarian, P. Torkzadeh
Abstract:
Implemented 5-bit 125-MS/s successive approximation register (SAR) analog to digital converter (ADC) on FPGA is presented in this paper.The design and modeling of a high performance SAR analog to digital converter are based on monotonic capacitor switching procedure algorithm .Spartan 3 FPGA is chosen for implementing SAR analog to digital converter algorithm. SAR VHDL program writes in Xilinx and modelsim uses for showing results.Keywords: Analog to digital converter, Successive approximation, Capacitor switching algorithm, FPGA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4366325 Versatile Dual-Mode Class-AB Four-Quadrant Analog Multiplier
Authors: Montree Kumngern, Kobchai Dejhan
Abstract:
Versatile dual-mode class-AB CMOS four-quadrant analog multiplier circuit is presented. The dual translinear loops and current mirrors are the basic building blocks in realization scheme. This technique provides; wide dynamic range, wide-bandwidth response and low power consumption. The major advantages of this approach are; its has single ended inputs; since its input is dual translinear loop operate in class-AB mode which make this multiplier configuration interesting for low-power applications; current multiplying, voltage multiplying, or current and voltage multiplying can be obtainable with balanced input. The simulation results of versatile analog multiplier demonstrate a linearity error of 1.2 %, a -3dB bandwidth of about 19MHz, a maximum power consumption of 0.46mW, and temperature compensated. Operation of versatile analog multiplier was also confirmed through an experiment using CMOS transistor array.Keywords: Class-AB, dual-mode CMOS analog multiplier, CMOS analog integrated circuit, CMOS translinear integrated circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286324 A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18um CMOS
Authors: Sanaz Haddadian, Rahele Hedayati
Abstract:
A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).
Keywords: Analog Integrated Circuit Design, Sample & Hold Amplifier and CMOS Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162323 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486322 An Application-Driven Procedure for Optimal Signal Digitization of Automotive-Grade Ultrasonic Sensors
Authors: Mohamed Shawki Elamir, Heinrich Gotzig, Raoul Zoellner, Patrick Maeder
Abstract:
In this work, a methodology is presented for identifying the optimal digitization parameters for the analog signal of ultrasonic sensors. These digitization parameters are the resolution of the analog to digital conversion and the sampling rate. This is accomplished though the derivation of characteristic curves based on Fano inequality and the calculation of the mutual information content over a given dataset. The mutual information is calculated between the examples in the dataset and the corresponding variation in the feature that needs to be estimated. The optimal parameters are identified in a manner that ensures optimal estimation performance while preventing inefficiency in using unnecessarily powerful analog to digital converters.
Keywords: Analog to digital conversion, digitization, sampling rate, ultrasonic sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447321 A Neural-Network-Based Fault Diagnosis Approach for Analog Circuits by Using Wavelet Transformation and Fractal Dimension as a Preprocessor
Abstract:
This paper presents a new method of analog fault diagnosis based on back-propagation neural networks (BPNNs) using wavelet decomposition and fractal dimension as preprocessors. The proposed method has the capability to detect and identify faulty components in an analog electronic circuit with tolerance by analyzing its impulse response. Using wavelet decomposition to preprocess the impulse response drastically de-noises the inputs to the neural network. The second preprocessing by fractal dimension can extract unique features, which are the fed to a neural network as inputs for further classification. A comparison of our work with [1] and [6], which also employs back-propagation (BP) neural networks, reveals that our system requires a much smaller network and performs significantly better in fault diagnosis of analog circuits due to our proposed preprocessing techniques.
Keywords: Analog circuits, fault diagnosis, tolerance, wavelettransform, fractal dimension, box dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200320 Detection of Diabetic Symptoms in Retina Images Using Analog Algorithms
Authors: Daniela Matei, Radu Matei
Abstract:
In this paper a class of analog algorithms based on the concept of Cellular Neural Network (CNN) is applied in some processing operations of some important medical images, namely retina images, for detecting various symptoms connected with diabetic retinopathy. Some specific processing tasks like morphological operations, linear filtering and thresholding are proposed, the corresponding template values are given and simulations on real retina images are provided.Keywords: Diabetic retinopathy, pathology detection, cellular neural networks, analog algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079319 Design of a CMOS Highly Linear Front-end IC with Auto Gain Controller for a Magnetic Field Transceiver
Authors: Yeon-kug Moon, Kang-Yoon Lee, Yun-Jae Won, Seung-Ok Lim
Abstract:
This paper describes a low-voltage and low-power channel selection analog front end with continuous-time low pass filters and highly linear programmable gain amplifier (PGA). The filters were realized as balanced Gm-C biquadratic filters to achieve a low current consumption. High linearity and a constant wide bandwidth are achieved by using a new transconductance (Gm) cell. The PGA has a voltage gain varying from 0 to 65dB, while maintaining a constant bandwidth. A filter tuning circuit that requires an accurate time base but no external components is presented. With a 1-Vrms differential input and output, the filter achieves -85dB THD and a 78dB signal-to-noise ratio. Both the filter and PGA were implemented in a 0.18um 1P6M n-well CMOS process. They consume 3.2mW from a 1.8V power supply and occupy an area of 0.19mm2.Keywords: component ; Channel selection filters, DC offset, programmable gain amplifier, tuning circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140318 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor
Authors: F. Rarbi, D. Dzahini, W. Uhring
Abstract:
In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.
Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303317 A Low Power High Frequency CMOS RF Four Quadrant Analog Mixer
Authors: M. Aleshams, A. Shahsavandi
Abstract:
This paper describes a CMOS four-quadrant multiplier intended for use in the front-end receiver by utilizing the square-law characteristic of the MOS transistor in the saturation region. The circuit is based on 0.35 um CMOS technology simulated using HSPICE software. The mixer has a third-order inter the power consumption is 271uW from a single 1.2V power supply. One of the features of the proposed design is using two MOS transistors limitation to reduce the supply voltage, which leads to reduce the power consumption. This technique provides a GHz bandwidth response and low power consumption.Keywords: RF-Mixer, Multiplier, cut-off frequency, power consumption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011316 A SiGe Low Power RF Front-End Receiver for 5.8GHz Wireless Biomedical Application
Authors: Hyunwon Moon
Abstract:
It is necessary to realize new biomedical wireless communication systems which send the signals collected from various bio sensors located at human body in order to monitor our health. Also, it should seamlessly connect to the existing wireless communication systems. A 5.8 GHz ISM band low power RF front-end receiver for a biomedical wireless communication system is implemented using a 0.5 µm SiGe BiCMOS process. To achieve low power RF front-end, the current optimization technique for selecting device size is utilized. The implemented low noise amplifier (LNA) shows a power gain of 9.8 dB, a noise figure (NF) of below 1.75 dB, and an IIP3 of higher than 7.5 dBm while current consumption is only 6 mA at supply voltage of 2.5 V. Also, the performance of a down-conversion mixer is measured as a conversion gain of 11 dB and SSB NF of 10 dB.
Keywords: Biomedical, low noise amplifier, mixer, receiver, RF front-end, SiGe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570315 The Effect of Pulsator on Washing Performance in a Front-Loading Washer
Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic
Abstract:
The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.
Keywords: Front-loading washer, mechanical force, fabric movement, pulsator, time saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823314 High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC
Authors: Wee Leong Son, Hasmayadi Abdul Majid, Rohana Musa
Abstract:
This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Low voltage ADC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561313 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding
Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer
Abstract:
In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.
Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069312 Temperature Sensor IC Design for Intracranial Monitoring Device
Authors: Wai Pan Chan, Minkyu Je
Abstract:
A precision CMOS chopping amplifier is adopted in this work to improve a CMOS temperature sensor high sensitive enough for intracranial temperature monitoring. An amplified temperature sensitivity of 18.8 ± 3*0.2 mV/oC is attained over the temperature range from 20 oC to 80 oC from a given 10 samples of the same wafer. The analog frontend design outputs the temperature dependent and the temperature independent signals which can be directly interfaced to a 10 bit ADC to accomplish an accurate temperature instrumentation system.
Keywords: Chopping, analog frontend, CMOS temperature sensor, traumatic brain injury (TBI), intracranial temperature monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979311 High Dynamic Range Resampling for Software Radio
Authors: Arthur David Snider, Laiq Azam
Abstract:
The classic problem of recovering arbitrary values of a band-limited signal from its samples has an added complication in software radio applications; namely, the resampling calculations inevitably fold aliases of the analog signal back into the original bandwidth. The phenomenon is quantified by the spur-free dynamic range. We demonstrate how a novel application of the Remez (Parks- McClellan) algorithm permits optimal signal recovery and SFDR, far surpassing state-of-the-art resamplers.Keywords: Sampling methods, Signal sampling, Digital radio, Digital-analog conversion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406310 Nuclear Medical Image Treatment System Based On FPGA in Real Time
Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah
Abstract:
We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)
Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676309 Calibration of Time-Skew Error in a M-Channel Time-Interleaved Analog-to-Digital Converter
Authors: Yu-Sheng Lee, Qi An
Abstract:
Offset mismatch, gain mismatch, and time-skew error between time-interleaved channels limit the performance of time-interleaved analog-to-digital converters (TIADC). This paper focused on the time-skew error. A new technique for calibrating time-skew error in M-channels TIADC is described, and simulation results are also presented.
Keywords: Calibration, time-skew error, time-interleavedanalog-to-digital converters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582308 Sigma-Delta ADCs Converter a Study Case
Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior
Abstract:
The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.
Keywords: Analysis, Oversampling Modulator, A/D converters, Sigma-Delta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686307 Molecular Dynamics and Circular Dichroism Studies on Aurein 1.2 and Retro Analog
Authors: Safyeh Soufian, Hoosein Naderi-Manesh, Abdoali Alizadeh, Mohammad Nabi Sarbolouki
Abstract:
Aurein 1.2 is a 13-residue amphipathic peptide with antibacterial and anticancer activity. Aurein1.2 and its retro analog were synthesized to study the activity of the peptides in relation to their structure. The antibacterial test result showed the retro-analog is inactive. The secondary structural analysis by CD spectra indicated that both of the peptides at TFE/Water adopt alpha-helical conformation. MD simulation was performed on aurein 1.2 and retro-analog in water and TFE in order to analyse the factors that are involved in the activity difference between retro and the native peptide. The simulation results are discussed and validated in the light of experimental data from the CD experiment. Both of the peptides showed a relatively similar pattern for their hydrophobicity, hydrophilicity, solvent accessible surfaces, and solvent accessible hydrophobic surfaces. However, they showed different in directions of dipole moment of peptides. Also, Our results further indicate that the reversion of the amino acid sequence affects flexibility .The data also showed that factors causing structural rigidity may decrease the activity. Consequently, our finding suggests that in the case of sequence-reversed peptide strategy, one has to pay attention to the role of amino acid sequence order in making flexibility and role of dipole moment direction in peptide activity. KeywordsAntimicrobial peptides, retro, molecular dynamic, circular dichroism.Keywords: Antimicrobial peptides, retro, molecular dynamic, circular dichroism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850306 Numerical Investigation on Anchored Sheet Pile Quay Wall with Separated Relieving Platform
Authors: Mahmoud Roushdy, Mohamed El Naggar, Ahmed Yehia Abdelaziz
Abstract:
Anchored sheet pile has been used worldwide as front quay walls for decades. With the increase in vessel drafts and weights, those sheet pile walls need to be upgraded by increasing the depth of the dredging line in front of the wall. One of the upgrades for the sheet pile wall is to add a separated platform to the system, where the platform is structurally separated from the front wall. The platform is structurally separated from the front wall. This paper presents a numerical investigation utilizing finite element analysis on the behavior of separated relieve platforms installed within existing anchored sheet pile quay walls. The investigation was done in two steps: a verification step followed by a parametric study. In the verification step, the numerical model was verified based on field measurements performed by others. The validated model was extended within the parametric study to a series of models with different backfill soils, separation gap width, and number of pile rows supporting the platform. The results of the numerical investigation show that using stiff clay as backfill soil (neglecting consolidation) gives better performance for the front wall and the first pile row adjacent to sandy backfills. The degree of compaction of the sandy backfill slightly increases lateral deformations but reduces bending moment acting on pile rows, while the effect is minor on the front wall. In addition, the increase in the separation gap width gradually increases bending moments on the front wall regardless of the backfill soil type, while this effect is reversed on pile rows (gradually decrease). Finally, the paper studies the possibility of deepening the basin along with the separation to take advantage of the positive separation effect on piles, and front wall.
Keywords: Anchored sheet pile, relieving platform, separation gap, upgrade quay wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277305 A Performance Evaluation of Oscillation Based Test in Continuous Time Filters
Authors: Eduardo Romero, Marcelo Costamagna, Gabriela Peretti, Carlos Marqués
Abstract:
This work evaluates the ability of OBT for detecting parametric faults in continuous-time filters. To this end, we adopt two filters with quite different topologies as cases of study and a previously reported statistical fault model. In addition, we explore the behavior of the test schemes when a particular test condition is changed. The new data reported here, obtained from a fault simulation process, reveal a lower performance of OBT not observed in previous work using single-deviation faults, even under the change in the test condition.
Keywords: Testing, analog fault simulation, analog filter test, oscillation based test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444304 Individual Actuators of a Car-Like Robot with Back Trailer
Authors: Tarek M. Nazih El-Derini, Ahmed K. El-Shenawy
Abstract:
This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T).The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup.
Keywords: Kinematics, Modeling, Wheeled Mobile Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309303 RRNS-Convolutional Concatenated Code for OFDM based Wireless Communication with Direct Analog-to-Residue Converter
Authors: Shahana T. K., Babita R. Jose, K. Poulose Jacob, Sreela Sasi
Abstract:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. Here, a direct conversion of analog signal to residue domain is done to reduce the conversion complexity using sigma-delta based parallel analog-to-residue converter. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.Keywords: Analog-to-residue converter, Concatenated codes, OFDM, Redundant Residue Number System, Sigma-delta modulator, Wireless communication
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944