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High Dynamic Range Resampling for Software
Radio

Arthur David Snider, Laiq Azam

Abstract— The classic problem of recovering arbitrary values o
a band-limited signal from its samples has an added complicatis
in software radio applications; namely, the resampling calculatior
inevitably fold aliases of the analog signal back into the origine
bandwidth. The phenomenon is quantified by the spur-free dynan
range. We demonstrate how a novel application of the Remez (Par
McClellan) algorithm permits optimal signal recovery and SFDR, fa
surpassing state-of-the-art resamplers.
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I. INTRODUCTION

HE goal of software radio is to replace electronic sig ~

nal processing functions with digital signal processin
algorithms. Thus the received analog signal is to be sampled
and replaced by a digital signal as early as possible (that is
as close to radio frequency as possible). In any assembly of
digital radio hardware the various devices for the subseique
digital processing may call for disparate sampling rates. F The second formula emphasizes that the samples taken more
robustness, then, it is necessary to have an algorithm themotely from the time (= MT) are weighted less, in the
changes the sampling rate of a discrete signal; it “fills in” geconstruction ofz(t) (since sinc(-) goes to zero at infinity;
interpolates the values of the original analog signal, ketw see Figure 1).
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Fig. 1. sinc(t)

samples.

Because the support of the sinc function is of infinite

A classic theorem from approximation theory, developegktent,exactresampling entails using all of the sampled values

and refined by scientists from Poisson to Shanifibr- 7],
states that exact interpolation is possible if the analggadiis

z(nT) and is a practical impossibility. Commercial resamplers
typically replace thesinc by a finitely supported functioh

sampled at a rate exceeding twice its bandwidth. To be @ecisuch as a truncategnc or a linear or bicubic spline (Figure

let z(t) be an analog function with Fourier transforf(w)

confined to the interval-Qpw, Qpw], sampled at intervals

of durationT < 7 /Qpw . Then the condition
S z(t) e ¥t dt = 0if |w| > Qpw
2w

— 00

X(w) =

2), giving the approximate interpolations

w) ~ €)= Y a(nT) h(z )
supp h - (2)
= > (M —nT) h(z +n)
supp h

implies that for any timet, expressed in terms of sampling

instants ag = MT + 7 (0<t<T),

oo

z(t) = Z x(nT) sinc(% —n)
o @
= Z x([M = n|T) sinc(t/T + n)
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If the support ofh has lengthL, (2) gives an approximate
interpolation usingnt(L) sampled values.
The figures of merit for an approximate “interpolating
kernel” h are
1) the length of the support of h (the number of multiplies
in (2),
2) the accuracy of the interpolation (2), and
3) the spur-free dynamic range, to be discussed in the
following section.

II. SPUR-FREEDYNAMIC RANGE

The Fourier transform of equation (2) is expressed in term
of the transform&(w) of £(¢) and H (w) of h(t), respectively,
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Fig. 2. Finitely supported resampler kernel Fig. 3. Fourier Transform of Monotone

by i
o0
Ew)=T g z(nT) e I™T H(WwT) (3) 0.8
n=-—oo

0.6

The same operation, performed on equation (1), expresses
Fourier transformX (w) of x(¢) in terms of the transform of 4
sinc(t), which is the characteristic functio.,(w) of the

interval (—m,7) ( = 1 for |w| < m, zero otherwisg 0.2-
divided by 27
0
T\ —jnwT 02T 5T T Wt 0 wT 2wt swT
X(w) = o Z x(nT) e Xt (wT) PR
T & _ (4) Fig. 4. Fourier Transform of sampled monotone
“\or Z z(nT) e 7™ ) X /r(w)
= Xper (W) Xtn/r(W) Figure 5 displays the function2rH (wT) derived from

the interpolating kerneh(t). If A is finitely supported, its

where X, (w) is the/T-periodic extension of (w). Thus  transform must have unbounded support. Figuteen shows
(3,4) become the Fourier transforn®(w) of the reconstructed functiof(t).

- Note how the unbounded support Bf(wT') has given rise to

=(w) = Xper(w) 2mH(WT) (5) “spurs”in the spectrum of(t). b
X(w) = Xper(w) X/ (w) Resamplings(¢) at a new ratel /T then folds these spurs
into the original signal’s bandwidth, as seen in Figure$or
1/T" > 1/T) and 8 (for 1/T" < 1/T but still faster than
ﬁge critical rateQ gy /7). For the software radio application,
where the bandwidth is divided among different users, this

this interpretation is used in the subsequent analysiscajp results in spectral leakage into other subbands and must be
the resampling is done at a constant rate, differing from tﬁgppressed.

original ratel/T. (Some applications may call for resampling

at theoriginal rate, and some may resamglet nonuniform Il. QUANTATIVE ERRORMETRICS

intervals.) Although the spectral aspect of resamplingdeenn  The quality of any resampling algorithm, as regards the
explained by other authors, for expository reasons wetilit's software radio application, is measured by the accuracy of
it for the simplest bandlimited signal, a (complex) monetornthe interpolated signal and the suppression of the sputs tha
x(t) = /¥, Figure3 displays the Fourier transfornX (w) = are aliased into the bandwidth. For the sake of exposition we
d(w —Q), of the monotone. It also displays the “oversamplinguantify the latter first.

guardband”, usually expressed as a fraction of the frequenc Figure6 shows that the transfor@(w) of the interpolation
Qpw. Figure4 displays the Fourier transform of the sampleg(¢) of a monotone can be envisioned as a “comb” of delta
signal z(nT); the well- known “folding” effect results in the functions modulated (in frequency space!) by the envelope
periodic X e (w). 27 H(wT). The highest amplitude that any spur can have is

In software radio the interpolated functicf{t) is obvi-
ously not computed at every time only the discrete values
called for by the application are needed. But the effect
formally equivalent to constructing and resamplifig), and
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thus limited by the maximum of2xH (wT)| in the region o
where the spur occurs. A little study of Figure reveals = xp) | () — 27 H (T duo
that all spurs have frequencies higher thanT) plus the per Xtm/T
oversampling guard bandr/T) — Qgw. Thus oo

2
max spur= max{|27rH(wT)\ : % — Qpw <w < ©
Therefore the mean squaté?) energy of the interpolation

The spur-freedynamic range is measured by the ratio of'ror can be measured by Parsevals’ theorem:
the intensity of the original monotone (one) to the maximum
spur. Thus a specification ¢f dB as the SFDR is satisfied by
demanding:

error ener () — D) =2 Xper (w)]?
e (2 - 2 Gy < < o0} < 105 (@) ay= [l2(t) — &(1)]12 = 2n / {1 X per ()|

. . 2
Now we turn to assessing thecuracyof the interpolates. Xetr /(@) — 20 H(WT)|? fdw
Observe that the difference between the actual signal value

and the value computed by resampling can be expressed in ) _ o )
terms of the Fourier transforms by: This error is estimated by quantifying the difference be-

tweeny ., r(w) and2r H(wT). If we assume that the SFDR
is large, theny .. ,r(w) and2r H (wT') are both negligible for
s lw| > 27/T — Qpw, while X, (w) =0 for Qpw < |w| <
z(t) — £(t) = / {X(w) — E(w) }e/"dw 21 /T — Qpw; therefore the error energyy and the signal
5o energysS are related by
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= 5 X MaX,,|<qpy { [Xtr/7(@) — QWH(wT)]2}
Thus a specification of (minus) dB as the maximum allow-

In theory, at least, one can specify the degree (= [length
of support ofh]+At), interpretr as the “frequency”, spec-
ify [0,QpwAt] and [2rAt/T — QpwAt, c0) respectively,
as the passband and stopband, and toy with the stopband
and passband weights until the specificatigfs3) are met.
Multiplying the “filter coefficient” n,, by 27 /At yields the
value of h(nAt).

The Parks-McClellan code is unreliable when it tries to find
approximating polynomials of degree greater ti¥nor so.
However, it has no problems wittigonometric polynomials
of degree500 (!). This phenomenon can ultimately be traced
to the stability of the discrete Fourier transform (a unitar
transformation), which would be a strong competitor to the
best approximating polynomial.

As an example of the efficacy of this procedure, consider an
industry standard for a resampler, the Integsil16 interpola-
tor, which is designed for operation witio% oversampling.
The support of the interpolating kernkeko16(t) has lengttt,
and it interpolates2 values per sampling interval. Its signal-
to-noise ratio in the passbhand38 d B, and its SFDR i$2 dB.

Requesting & x 32 = 192-degree trigonometric polyno-
mial from MATLAB’s remez.m m-file with passband/stopband
weights in the ratio 1:290, we computed an interpolating
kernel with the same support #2216 that achieved an inband
accuracy SNR 080 dB and a SFDR of/9 dB - an enormous
improvement, achieved simply by altering the stored vabfes
h(t) (!) The interpolating kernek(t) is shown in Figure and
its Fourier transform in Figuréo0.

We also designed an interpolating kernel of support length
8 achieving30 dB SNR, 100 dB SFDR at50% oversam-

able distortion & = signal to noise energy ratio SNR) can bgling, and one of support length8 achieving30 dB SNR,

satisfied by imposing the (sufficient) condition

max{|1 — 27 H(wT)|* : || < Qpw} <107%/%° ()

IV. SOLUTION

100 dB SFDR at only20% oversampling. Their transforms
are displayed in Figuresl and12.

V. REMARKS
A. Farrow’s Scheme

The constraintg6,8) are suggestive of the classic appli- The interpolating kerneh(t) is, of course, computed in
cation of the Parks-McClellan coding of Remez’s exchandabulated form, and can be stored as a table. In fact, thisefor
algorithm, whereby one seeks a digital filter with specifie§ used in the Intersi#216. Farrow[8] has proposed a very
passband and stopband amplitudes, separated by a doe't-ftematic implementation of the resampling calculatigns
band. See Figur6. However, the situation is different here2(t) is stored as a (true) polynomial. We have concatenated the

We are looking for acontinuous finitely-supporteélinction
h(t) whose Fourier transfornif (w) has these specifications.
The modus operandiby which we jury-rig the Parks-

trigonometric-polynomial Remez algorithm described abov
with the Remez best-(true)-polynomial fitter to achievesthi
For an oversampling margin 60%, the degree8 polyno-

McClellan algorithm to solve our problem is to considefial approximant to the interpolating kerne{t) in Fig. 1b
the Riemann sum interpretation of the integral arising & tr(SUF_JPOVt length= 6, SNR= 30 dB, SFDR= 79 dB,)
Fourier transform: ifh(t) is tabulated with the mesh pointsachieves comparable SNR and SFDR levaisgnd 77 dB);

t, = n At and we introduce the abbreviation = At w,

T o

At —jnAtw —jnv
= Z[h(nAt)%]e Jnite = Znne J

H(w) ! /h(t)eij“’tdt R~ ;Zh(tn)eﬂt"“’At
i

lower degree approximants cannot match this SFDR perfor-
mance. For the kernel of support length 8, which achieved
100 dB SFDR, its degree-28 approximant delived3 dB
SFDR. Finding a polynomial approximant for the kernel of
support length18, which achieved100 dB SFDR at20%
oversampling, was impossible; a degree-33 approximant de-
livered only 51 dB, and higher degree polynomials were

wheren,, = h(nAt) At/27. The final member of this equationillconditioned. This highlights the difference betweeigono-
is a trigonometric polynomial; but its degree is enormousmetric and true polynomial approximants; the trigononeetri

namely, the number of discretization points required taolzie
the kernelh(t).
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ok | rounding, etc.) We estimated this effect by comparing the

SNRs and SFDRs reported for a discretization level3df
points per unit time with those far28 points. The discrepan-
-40F . cies only amounted to fractions of dB.

D. Inband Error Metrics

The common industry practice for estimating the accuracy
of the interpolates is the ratio of the signal noide, (horm
squared) to the error noise, equati@). Other norm-estimates
can be similarly derived. Among the possibilities are the
following:

-100r

-1201

-1401

1 . . . . .
—62?50 -100 -50 0 50 100 150
rad. / sec. —————- > Qpw

‘ 2

2
Fig. 11. 8-tap Re-sampler2r H (wT) N < 2mmax | X (w) 1 —27H(WT)| dw,

—Qpw
Qpw
Of course, the Farrow scheme sacrifices speed of computa- ch(t)\!2 / ’1 _ 27rH(wT)]2dw /21
tion for reduced memory requirements. A variant of the Rarro ! ’
scheme can be constructed to employ piecewise polynomial ) —Qsw
interpolating kernels. We constructed an approximant & th z(@®)||] ||sinc(t) — h(t)]
kernel of support lengtl8 (30 dB SNR, 100 dB SFDR)

consisting of8 degree-6 polynomials that deliveré dB E. Filter interpretations

IN

2
27

SNR and94 dB SFDR. A filter equation has the form(t) = 3 y(t — n)h(n).
The interpolator equatio(2) does not qualify, because of the
B. Complexity variability of the parameter in the argument ofi (in the

right hand member of2)). If 7 = constant, howeve(?2) is a

approximants is facilitated by symmetry; both are even funfiitér. and it should therefore have S'Q;JTS‘?'dS as eigenionst

tions. Piecewise polynomial approximants do not enjoy thisfollows that the complex monoton€™ is an eigenfunction
property. The evaluation of equati¢®) requires one multiply @nd should be reproduced without spurs. This is, in fact,
per unit length of the support df(t), times the computational e case because the signal is then resan/1p|ed at the same
burden of evaluating each value bft) - zero for tabulated requency; all the spurs align in Figuée for 7" =17.
values,d multiplies for piecewise polynomials of degree  Another interpretation of equatiof2) that validates it as
(Horner's method){d/2 + 1] multiplies for full polynomials a filter equaﬂo_n is seen by subd|V|_d|_ng the s_ample |r_1terval
(half the degree for even polynomials plus one to calculafe = At takingt = nAt, and defining the discrete signal

t%). Zsqgmple(NAL) = m(%T) when% is an integer) otherwise

The storage of tabulated values/dft) or of its polynomial

C. Jitter for then (2) becomes
Jitter is the phenomenon that occurs due to imprecise EmAl) = 3 Tyamp(kAL) h(ﬂ)’
stipulation of the interpolation time (due to discretization, A P
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which has the filter format. All the frequency interpretaso
described above can be gleaned from this formulation.
Before we happened upon the notion of attacking the
problem with the Remez algorithm, we expended (a lot of)
effort to design interpolating kernelgt) with small supports
by using classical windowing functions to approximate the
“boxcar” transform of the sinc function. We tested iterated
Hamming windows, combination of Helms-Thomni&@s10] and
Hamming windows, and’>°-mollified boxcars to try to bring
the SFDR down. While we successfully achieved rapid falloff
of H(w) for large |w|, the thorny first spur ab ~ 27/T —
Qpw (Figure 5) was impossible to suppress. The equiripple
structure, exhibited in Figure, of the Fourier transforms of
the interpolating transforms produced by our new procedure
provides the “flat” falloff that is needed. Indeed, it showatt
the new kernels are optimal in the usual sefisé.

VI. CONCLUSION

This novel application of the Remez algorithm handsomely
outperforms all of the interpolators surveyed by the awghor
when the SFDR is taken into consideration. It seems likedy th
it will prove to be optimal for the resampling task. Codes for
designing these resamplers for arbitrary system spedifitat
are available from the second author (patent pending).
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