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Abstract—In this work, a methodology is presented for identifying
the optimal digitization parameters for the analog signal of ultrasonic
sensors. These digitization parameters are the resolution of the analog
to digital conversion and the sampling rate. This is accomplished
though the derivation of characteristic curves based on Fano
inequality and the calculation of the mutual information content over
a given dataset. The mutual information is calculated between the
examples in the dataset and the corresponding variation in the feature
that needs to be estimated. The optimal parameters are identified
in a manner that ensures optimal estimation performance while
preventing inefficiency in using unnecessarily powerful analog to
digital converters.

Keywords—Analog to digital conversion, digitization, sampling
rate, ultrasonic sensors.

I. INTRODUCTION

THE signal provided by ultrasonic sensors is analog in

nature and needs to be digitized to allow for further

processing in the embedded systems of advanced driver

assistance systems (ADAS). The digitization parameters such

as the resolution of the analog to digital converter (ADC) in

terms of bits, and the sampling rate are directly proportional

to the cost of the ADC and the rest of the tool chain to

be able to cope with the increasing size of the data and

to provide processing results in realtime fashion. The higher

the ADC’s resolution and sample rate, the more precise the

digitized signal is, and therefore the less information is lost

in the analog signal from the sensor due to digitization. The

conflict arises from the fact that the price of the components

increases as the ADC capabilities increase, promoting the need

to find the optimal digitization values that would allow for

the maximum relevant information extraction. The ADAS’s

capacity to function precisely and dependably is met while

maintaining the lowest feasible digitizing parameters and,

consequently, the lowest price.

Ultrasonic sensors are used in automotive industry amongst

other sensor technologies for environment perception. The

functionality of the ultrasonic sensor is based on the

calculation of the time-of-flight between transmitting a wave

and detecting an echo. This is translated into a radial distance

from the membrane of the sensor to an obstacle. Typically,

automotive systems that are based on ultrasonic sensors

employ several sensors and use the combined data from these

sensors to perform triangulation and identify the location
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of obstacles. Other than the distance, other features can be

estimated from the ultrasonic sensor signal such as the height,

width, and tilt of an obstacle. These obstacle features provide

more information to the ADAS to be able to perform its task

effectively.

In the following sections we show how a statistical

probabilistic relation is established between the signal

generated by the ultrasonic sensor and the obstacle feature

being estimated. A systematic method is presented, where the

mutual information value is calculated based on the dataset

being analyzed. The mutual information is then linked with

the Fano [1] inequality identifying the asymptotic maximum

performance possible in terms of bit error rate Perr. A

practical example for obstacle height detection using ultrasonic

signals is given on which this methodology is applied.

II. STATE OF THE ART

Many recent papers provide strategies for estimating

information content, for example [2]. In [3] a proposed

method for estimation of mutual information is presented

which increases efficiency of the calculations as well as being

adaptive in terms of having higher resolution where data

are denser. A more specific method to estimate the mutual

information using density kernels is presented in [4] The use

of mutual information concepts to choose the most relevant

features for machine learning is discussed and presented in

[5]. This study differs in that mutual information is utilized

to analyze the quality of the ensemble signal characteristics

as a whole and its dependency on the digitization settings,

taking into account all of a given signal’s qualities rather than

just a part. There are several other publications that discuss

different aspects of feature selection using mutual information

which differ from the presented approach in this work in the

same manner such as [6], [7], [8]. Most of these approaches

and more are summed up in [9] also showing the optimal set

of features to be selected for an estimation problem based

on mutual information analysis. Mutual information concepts

applied to ultrasonic signals are present in literature but mainly

for medical imaging such as in [10], [11] and [12]. The focus

on this work is on the automotive grade ultrasonic sensors.

The asymptotic statistical maximum performance limit

was first defined by Fano as early as 1961 in [1]. The

concept is further discussed in several recent publications as

well such as [13] which investigates the relation between

mutual information variations and the corresponding Fano
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limit assessment. Some literature also investigated the feature

selection from a Fano inequality perspective such as [14].

Using different sources of information increases the mutual

information and ability to classify a certain characteristic

variation which can be measured by a variation in the Fano

limit as discussed in [15] showing the increase in mutual

information with sensor fusion techniques and how this reflects

on the Fano limit value.

Signals from ultrasonic sensors can be used for obstacle

height estimation as presented in [16]. The use of ultrasonic

sensors as a source of information for environment perception

is also seen in [17] and [18] where the signal from the

sensor is further processed for disturbance filtering and noise

suppression.

III. METHODOLOGY

This work proposes an expression that defines how much

knowledge is gained about the feature value X by inspecting

the ultrasonic sensor echo signal Y . The more knowledge

we gain about the obstacle feature value by inspecting the

ultrasonic echo, the more certain is the estimation. This can

be defined by calculating its complement, which is the amount

of uncertainty about the estimation. In other words, how much

uncertainty exists about X by inspecting Y . This fits exactly

to the definition of conditional entropy of X given Y . Which

is denoted by H(X|Y ).
There are two extreme values of the conditional entropy

H(X|Y ). The first extreme value that the conditional entropy

can have is 0. This means that X is perfectly known with

complete certainty by inspecting Y . The other extreme value

that the conditional entropy could have is H(X), which

means that the random processes X and Y are completely

independent and there is no information gained about X by

inspecting Y . This is also known as the Gibbs’s inequality

which is represented in (1).

H(X|Y ) ≤ H(X) (1)

The value of the conditional entropy between the inspected

ultrasonic echo and the value of the feature pertaining to the

reflecting obstacle is a measure of uncertainty of the feature

with knowledge of the signal. Thus, it is directly related to the

amount of error in the feature estimation. The relation between

the conditional entropy and the estimation error is derived and

proved by Fano [1] and is represented in Fano’s inequality in

(2).

H(Perr) + PerrLog(|X − 1|) ≥ H(X|Y ) (2)

where Perr is the probability of error of a binary state random

variable having one of two possible values, either erroneous or

not erroneous. X and Y are as defined earlier the feature value

and the ultrasonic echo resulting from the obstacle having this

feature value respectively.

The conditional entropy, which is the uncertainty in the

value of X given Y , is further broken down into a relation

between the entropy of X and the mutual information between

X and Y as in (3)

H(X|Y ) = H(X)− I(X,Y ) (3)

Replacing this into the Fano inequalities equation (2) results

in a relation between the mutual information between X and

Y on one side and the lower bound of the probability of error

in the estimation of X given Y on the other side as defined

in (4).

I(X,Y ) ≥ H(X)−H(Perr)− PerrLog(|X − 1|) (4)

This equation can be physically interpreted that for an

estimator to reach a specific level of performance defined by

a minimum level of Perr, there must be a minimum level of

mutual information present between X and Y . This level

is identified by the Fano inequality. Moreover, the number

of classes plays an important role in the equation and is also

taken into account as a variable in this definition. Based on this

fact, a wider interpretation is that for an estimator to achieve

a certain level of quality for a specific number of classes to

be estimated, the mutual information between the estimated

feature X and the inspected signal Y must be above a certain

value. From this interpretation, we can generate characteristic

curves based on Fano inequality, specifying the essential

criteria to achieve a certain minimum value of estimation error.

These curves will be referred to as Fano characteristic curves

and are presented in Fig. 1.

Fig. 1 Fano characteristic curves defining the relation between the mutual
information between feature value and the number of classes to be estimated
to achieve a certain minimum quality of estimation in terms of probability

of estimation error

The mutual information between the change in obstacle

feature and the corresponding ultrasonic signal is defined by

(5).

I(X, Ȳ ) =
∑
∀x

∑
∀ȳ

(
P (x, ȳ)Log2

(
P (x, ȳ)

P (x)P (ȳ)

))
(5)

where, P (x) is the probability distribution function (PDF) of

the different height levels of the obstacle. P (y) is the PDF of

the different signals in the dataset. The joint PDF between the
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occurrence that the obstacle has a certain height and the signal

generated by the ultrasonic sensor is noted as P (x, ȳ). Using

these curves, and the calculated mutual information value of

a predetermined dataset, it is possible to identify the expected

performance of an optimal estimator that estimates the value

of the specific obstacle feature. By repeating this procedure

over a range of possible digitization parameters such as ADC

resolution and sampling rate, then the optimal value for the

digitization parameters can be identified.

In the next section, a practical example of how this

technique is put to use, ultrasonic echo signals from obstacles

of various heights are recorded in order to determine the best

digitization parameters for this ultrasonic signal, allowing the

obstacle height to be determined solely by the inspection of

the digitized ultrasonic echo signal.

IV. PRACTICAL APPLICATION

If the effect of variation of a certain feature such as height

of an obstacle can be isolated and extracted from the generated

sensor signal, and mapped back to the height value, then with

this system, we can have an estimate of the height feature value

by inspecting the attributes pertaining to the sensor signal,

which in our case is the ultrasonic sensor detected echo. A

simple schematic of this system is illustrated in Fig. (2).

Fig. 2 Schematic representation of the system of obstacle feature value
estimation by inspecting sensor signal attributes

A. Measurement Campaign

The measurement campaign is focused on identifying the

influence of the variation of the obstacle height on the

generated ultrasonic sensor signal. For this purpose a set

of Lego cubes are used to build towers of different heights

ranging from 2 cm to 50 cm with a 2 cm step.

An automotive grade ultrasonic sensor is used to transmit

an ultrasonic wave and detect the echo bouncing off obstacles

in the range of the sensor. The signal is collected from the

sensor using an analog to digital converter with different values

of sampling rate and accuracy. Examples of obstacles with

different heights are presented in Fig. (3).

B. Results and Discussion

By decreasing the ADC resolution we see that the mutual

information between the obstacle height value and the

corresponding ultrasonic signals in the dataset is decreasing

as shown in Fig. (4). For the highest 5 values of the ADC

resolution, namely [8, 10], we see no change in the mutual

information value. This indicates that there is no added value

for using a more expensive ADC having 10 bits resolution.

Fig. 3 Example of raw echoes (before pre-processing) from obstacles having
different heights

The same height estimation performance could be achieved

with an 8 bit ADC as with a 10 bit ADC. As the ADC

resolution drops below 8 bits we see a drop in the value of the

mutual information. This indicates that the height estimator

performance will be degraded on a statistical level. By

projecting these mutual information values on the derived Fano

characteristic curves, it is possible to identify the expected

error rate for the given number of classes in which the obstacle

height is to be classified. This is of course assuming an optimal

estimator or classifier is employed.

Fig. 4 Change in the mutual information value with change in the ADC
resolution for the full dataset

Similarly, the mutual information is calculated for the

dataset at different sampling rates and the results are presented

in Fig. (5). It is directly observed that for sampling rate values

above 250 kSample/s there is very little benefit to be gained

in terms of mutual information. As sampling rate values drop

beyond the 100 kSample/s mark, we see a very rapid drop in

the mutual information value thus indicating rapid degradation

in the ability to estimate the obstacle height by inspecting the
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ultrasonic signal output from the ultrasonic sensor. In a similar

manner, by projecting the mutual information values on the

derived Fano characteristic curves, it is possible to predict the

performance of an optimal estimator in terms of statistical

error rate given the number of height classes in which the

estimator will classify the obstacle heights.

Fig. 5 Change in the mutual information value with change in the sampling
frequency

V. CONCLUSION

The capability to estimate a feature of an obstacle by

analyzing its echo signal that is detected by an ultrasonic

sensor is quantifiable in terms of mutual information. This

value may be used to determine if the estimation problem is

unsolvable and whether there is no relationship between the

signal generated by the sensor on the one hand and the change

in the obstacle feature value on the other. Additionally, we may

validate that there is enough mutual information between the

signal and the feature for the feature to be estimated, given

an appropriate estimator. Under the assumption that we have

an optimum estimator, it is also possible to mathematically

identify the maximum possible performance on a statistical

basis, in terms of probability of error, using the Fano’s

inequality and the characteristic curves that are derived in this

work.

We also see that for the practical application presented,

which is classifying the height of obstacles based on their

generated ultrasonic signal, the optimum digitization values

are clearly identified using this methodology. This shows

that using more expensive and capable ADCs will not

provide additional benefit for this specific application. It also

demonstrates that having less capable ADCs has a direct

impact on the system’s ability to perform the task of height

estimation.

The presented methodology provides the means to clearly

identify the needed resources based on the intended application

thus preventing the failure to achieve the intended target

of the ADAS and at the same time preventing the use of

unnecessarily expensive components that would bring no extra

value to the intended functionality. Applying this methodology

to the different types of sensors in automotive industry shows

very high potential in optimizing the overall cost and ensuring

the delivery of ADAS functionalities.
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