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Abstract—In recent years, the presence of short-range
millimeter-wave radar in civil application has increased significantly.
Autonomous driving, security, 3D imaging and high data rate
communication systems are a few examples. The next challenge is
the integration inside small form-factor devices, such as smartphones
(e.g. gesture recognition). The main challenge is implementation of
a truly low-power, low-complexity high-resolution radar. The most
popular approach is the Frequency Modulated Continuous Wave
(FMCW) radar, with an analog multiplication front-end. In this
paper, we present an approach for adaptive estimation and correction
of impairments of such front-end, specifically implemented using
the Six-Port Device (SPD) as the multiplier element. The proposed
algorithm was simulated and implemented on a 60 GHz radar lab
prototype.

Keywords—Radar, millimeter-wave, six-port, FMCW Radar, IQ
mismatch.

I. INTRODUCTION

A. FMCW Radar

M ILLIMETER-wave radar, due to its high bandwidth of

signal transmission and extremely low wavelength, has

the advantages of:

1) High resolution (range, and also angular, when

combined with multiple antenna elements)

2) Ability to observe micro-meter scale movement and

vibration of obstacles

3) Ability to perceive different material properties (e.g.

dielectric constant)

For radar application with ranges up to ~300 meters, the

most common architecture is continuous wave radar.

Using FMCW signals (e.g. Chirp signal), the targets’ range and

velocity information is within RX(t) ·TX(t)∗, where TX(t)
and RX(t) are the complex envelopes of the transmitted and

received signals, respectively.

When considering the case of FMCW signal, we can

generally write the complex envelope of transmitted signal:

TX(t) = ejφ(t) (1)

In the general case of M ideal moving targets, with

constant radial velocity, the RX(t) signal is composed of the

transmitted signal reflected from targets in field. Each m-th

reflection has a set of attenuation (complex phasor dm ), time

delay τm and Doppler scaling γm:

RX(t) =
M∑

m=1

dm · TX (γm (t− τm)) + n (t) (2)
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n (t) is an additive white Gaussian noise. Multiplication of

received and transmitted signals yields the function:

RX(t) · TX(t)∗ =
M∑

m=1

dm · ejφ(γm(t−τm))−jφ(t) (3)

The range (delay) and velocity (Doppler) of the targets in

field can be estimated from this function.

Note that in the case of static targets and transmission of a

Chirp signal, we have: TX(t) = ej(at
2+bt+c) , so we get the

following term for the multiplication function:

RX(t) · TX(t)∗ =
M∑

m=1

dm · ej(aτ2
m−bτm) · e−j2aτmt (4)

which is a sum of M complex tones, where each tone’s

angular frequency 2aτm is linearly related to the range of the

corresponding target.

In terms of power consumption and size, it is best

to implement the multiplication in an analog manner, in

order to avoid down-conversion and sampling of RX(t),
which has an extremely large bandwidth (usually several

GHz). Typically the bandwidth of the multiplication output

(’Base-band signal’) is up to only a few MHz. Fig. 1 illustrates

a block diagram of a typical FMCW radar of this kind.

Fig. 1 Block diagram of FMCW radar with analog multiplication

B. Analog Multiplier Impairments

Several challenges arise in analog multiplication, among

them:

1) Amplitude and phase mismatch inside the circuit

branches lead to IQ mismatch, which degrades image

rejection severely

2) Leakage of the TX(t) signal to the RX(t) path,

which causes dynamic range limitation in the base-band

circuits and Analog to Digital (ADC) converter
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3) Non linearity – causes distortion of the output signal:

harmonics and intermodulation

The described mechanisms decrease the radar performance, in

the following ways:

• Create false targets (“phantoms”) in the radar image

• Limit the maximum and minimum range capability

• Limit the overall dynamic range capability of detecting

targets simultaneously

• Distort the target dimensions as interpreted by the radar

Note that these impairments are frequency dependent, due to

the fact that an extremely large bandwidth is used by the

radar. Thus, estimation and correction of these impairments

is more complex. These challenges and the problems they

cause can be solved in a digital manner (i.e. using algorithms),

due to the fact that outputs of the multiplying circuits are

being sampled using ADCs. For the case of FMCW (e.g.

Chirp signal), the method for estimation and correction of

frequency dependent impairments (as described in this paper)

becomes much simpler in terms of complexity. This further

enables implementation of low-power, low-complexity high

performance radar.

There are two architectures for implementation of the analog

multiplication unit:

1) Using a direct conversion mixer, known as ‘IQ

demodulator’ (‘IQ’ stands for ‘In-phase’ and 
’Quadrature’), where TX(t) signal is fed into LO 
port, and RX(t) signal is fed into RF port of the device 
(e.g. [1])

2) Using a ‘six port detector’

This paper focuses on the second technique, but note that the

proposed method can be modified so it can also be used in

systems with the first technique.

C. Six-Port Device

The six-port is a passive linear component, first developed 
in the 1970s for accurate automated measurements of the 
complex reflection coefficient in microwave network 
analysis [2]. Later it was integrated in various designs and 
prototypes of radar sensors (see [3]-[5]).

The major advantages of the six port implementation come

in terms of its high available input frequency bandwidth, low

power consumption and small circuit size. The six port system

has more degrees of freedom in terms of calibration and

correction, so its Error Vector Magnitude (EVM) performance

can be made better than the IQ demodulator used as a low-IF

receiver.

As seen in Fig. 2, the device consists of four hybrid

couplers, a single 90 degree phase shifter and four diode

detectors. The phase shifter, along with one of the hybrid

couplers, can be replaced by a power divider.

In an ideal six-port device, we get the following terms for

signals at inputs of the four diode detectors:

r1(t) = RX(t) + jTX(t) (5)

r2(t) = jRX(t) + TX(t)

r3(t) = jRX(t) + jTX(t)

r4(t) = −RX(t) + TX(t)

Based on the fact that “envelope detection” of a band-pass

signal is equivalent to extracting the magnitude of its complex

envelope (see Appendix): pi(t) = |ri(t)|2 , i = 1..4, so:

p1(t) = |RX(t)|2 + |TX(t)|2 + 2Re {jRX(t)∗ · TX(t)} (6)

p2(t) = |RX(t)|2 + |TX(t)|2 − 2Re {jRX(t)∗ · TX(t)}
p3(t) = |RX(t)|2 + |TX(t)|2 + 2Re {RX(t)∗ · TX(t)}
p4(t) = |RX(t)|2 + |TX(t)|2 − 2Re {RX(t)∗ · TX(t)}

Subtracting pairs of output signals, we get:

p3(t)− p4(t) = 4Re {RX(t)∗ · TX(t)} = 4Re {RX(t) · TX(t)∗}
p1(t)− p2(t) = 4Re {jRX(t)∗ · TX(t)} = 4Im {RX(t) · TX(t)∗}

These are actually the I,Q components of RX(t) · TX(t)∗.

Fig. 2 Schematic of the Six-Port Device

II. SYSTEM MODEL

In a practical implementation of a six-port device, there are

imperfections due to the implementation of the hybrids (e.g.

branches are not of equal magnitude), phase shifter, and the

four diodes (mainly mismatch between I-V curves of different

diodes). Note that reflections from different components

inside the device also contribute to this phenomena. These

impairments vary with frequency. The inputs of each of four

diode detectors can be modeled as:

r1(t) = ha1 (t)�RX(t) + hb1 (t)� jTX(t) (7)

r2(t) = ha2 (t)� jRX(t) + hb2 (t)� TX(t)

r3(t) = ha3 (t)� jRX(t) + hb3 (t)� jTX(t)

r4(t) = −ha4 (t)�RX(t) + hb4 (t)� TX(t)

where ha1 (t) , hb1 (t) , ... are complex impulse responses

of the analog paths of the six-port device (between each

inputs to outputs), and � denotes convolution. Note that

these impulse responses include the unequal responses of the

different diodes.

For the case of Chirp signal, we have a linear time-freq

relationship. Therefore, we can think of the RX(t), TX(t)
signals as being multiplied by “time varying” impairments:

r1(t) = a1 (t) ·RX(t) + b1 (t) · jTX(t) (8)

r2(t) = a2 (t) · jRX(t) + b2 (t) · TX(t)

r3(t) = a3 (t) · jRX(t) + b3 (t) · jTX(t)

r4(t) = −a4 (t) ·RX(t) + b4 (t) · TX(t)
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So, each time instance of a1 (t) , b1 (t) , ... is actually the
impairments set of a specific frequency (‘frequency bin’). Let
us denote ci = ai

∗ · bi, i = 1..4, and use the discrete-time
notation:

p1[n] = |a1[n]|2 |RX[n]|2 + |b1[n]|2 |TX[n]|2 + 2Re
{
c1[n] · jRX[n]

∗ · TX[n]
}

p2[n] = |a2[n]|2 |RX[n]|2 + |b2[n]|2 |TX[n]|2 − 2Re
{
c2[n] · jRX[n]

∗ · TX[n]
}

p3[n] = |a3[n]|2 |RX[n]|2 + |b3[n]|2 |TX[n]|2 + 2Re
{
c3[n] · RX[n]

∗ · TX[n]
}

p4[n] = |a4[n]|2 |RX[n]|2 + |b4[n]|2 |TX[n]|2 − 2Re
{
c4[n] · RX[n]

∗ · TX[n]
}

(9)

Note that, n ∈ [0, N − 1], so basically we can treat the

continuous Chirp signal as having N uniformly distributed

frequencies. The set of samples {pi[n]}N−1
n=0 is called a

“Frame”.

Now let us assume that we also have the sampled outputs

of the diodes when there is no RX(t) signal present: antennas

are directed to free space, where no targets are present. These

are denoted as {pi,no_rx[n]}N−1
n=0 , i = 1..4 and modeled as:

pi,no_rx[n] = |bi[n]|2 |TX[n]|2 , i = 1..4 (10)

Subtracting the “no RX” samples from the actual diode

output we get:

p̃i[n] ≡ pi[n]− pi,no_rx[n] (11)

Using the complex numbers identity Re {z1 · z2} =Re {z1} ·
Re {z2}−Im {z1}·Im {z2}, we can rewrite (9), and use a matrix

representation, for each n:

⎡
⎢⎢⎣

p̃1[n]
p̃2[n]
p̃3[n]
p̃4[n]

⎤
⎥⎥⎦ =

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Im {c1[n]} Re {c1[n]} |a1[n]|2
2

Im {c2[n]} −Re {c2[n]} |a2[n]|2
2

Re {c3[n]} Im {c3[n]} |a3[n]|2
2

−Re {c4[n]} −Im {c4[n]} |a4[n]|2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
⎡
⎣ 2Re

{
RX[n] · TX[n]∗}

2Im
{
RX[n] · TX[n]∗}
2 |RX[n]|2

⎤
⎦

(12)

We can use the fact that:

|ai[n]|2 =
|ci[n]|2
|bi[n]|2

=
|ci[n]|2

pi,no_rx[n]
· |TX[n]|2 , i = 1..4

and rewrite:⎡
⎢⎣

p̃1[n]
p̃2[n]
p̃3[n]
p̃4[n]

⎤
⎥⎦ = 2An ·

⎡
⎣ Re {RX[n] · TX[n]∗}

Im {RX[n] · TX[n]∗}
|TX[n]|2 |RX[n]|2

⎤
⎦

︸ ︷︷ ︸
xn

(13)

An =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Im {c1[n]} Re {c1[n]} |c1[n]|2
2p1,no_rx[n]

Im {c2[n]} −Re {c2[n]} |c2[n]|2
2p2,no_rx[n]

Re {c3[n]} Im {c3[n]} |c3[n]|2
2p3,no_rx[n]

−Re {c4[n]} −Im {c4[n]} |c4[n]|2
2p4,no_rx[n]

⎤
⎥⎥⎥⎥⎥⎥⎦

An is referred to as the “impairments matrix” of the n-th

frequency bin.

III. METHOD

A. Impairments Estimation

In order to reduce the number of unknown parameters,

let us assume that RX[n] · TX[n]∗is a zero-mean stationary

complex random process. Multiplying each side of (13) with

its transpose from right, and applying the expectation operator

E {}:

E

⎧⎪⎨
⎪⎩

⎡
⎢⎣

p̃1[n]
p̃2[n]
p̃3[n]
p̃4[n]

⎤
⎥⎦ · [ p̃1[n] p̃2[n] p̃3[n] p̃4[n]

]
⎫⎪⎬
⎪⎭ =

4An · E
{
xn · xH

n

}
·AT

n (14)

It is known that Re {RX[n] · TX[n]∗} , Im {RX[n] · TX[n]∗}
are orthogonal and have the same variance, and also orthogonal

to |TX[n]|2 |RX[n]|2 , therefore:

E
{
xn · xH

n

}
=

⎡
⎣

pn 0 0
0 pn 0
0 0 bn

⎤
⎦ (15)

The left side of (14) is the correlation matrix of the four

(modified) diode outputs, at the n-th frequency bin. This

matrix can be estimated using K ’calibration frames’, in which

only the n-th sample is focused:

Cn ≡ E

⎧⎪⎨
⎪⎩

⎡
⎢⎣

p̃1[n]
p̃2[n]
p̃3[n]
p̃4[n]

⎤
⎥⎦ · [ p̃1[n] p̃2[n] p̃3[n] p̃4[n]

]
⎫⎪⎬
⎪⎭ (16)

≈ 1

K
·

⎡
⎢⎢⎣

∑K
k=1 p̃k

1,cal[n] · p̃k
1,cal[n] · · · ∑K

k=1 p̃k
1,cal[n] · p̃k

4,cal[n]

.

.

.∑K
k=1 p̃k

4,cal[n] · p̃k
1,cal[n] . . .

∑K
k=1 p̃k

4,cal[n] · p̃k
4,cal[n]

⎤
⎥⎥⎦

It is mandatory that these K frames will capture varying

values of RX[n]. One option is to defining a calibration step,

in which a target is moved in front of the radar antenna, so

it is captured in many different ranges. The second option

is implementing an adaptive mechanism, in which calibration

frames are gathered during normal operation of the radar.
Here, we need to solve the equation:

Cn − 4An ·
⎡
⎣ qn 0 0

0 qn 0
0 0 zn

⎤
⎦ ·AT

n = 0 (17)

This can be solved for An, qn, zn using numeric methods,

using the following initial values, for example:

An,0 =

⎡
⎢⎢⎢⎢⎣

0 1 1
2p1,no_rx[n]

0 −1 1
2p2,no_rx[n]

1 0 1
2p3,no_rx[n]

−1 0 1
2p4,no_rx[n]

⎤
⎥⎥⎥⎥⎦ , qn,0 =

1

K
·

K∑
k=1

p̃
k
1,cal[n] · p̃k

1,cal[n]

zn,0 = 0

Note that impairments estimation process does not

necessarily need to run at real time, but only when system

conditions are changed (e.g. temperature change).

B. Impairments Correction

Let us denote the estimated impairments matrix of the n-th
frequency bin as Ân. Finally, for each frequency bin n, we use
Ân in (13). The least squares estimator for the I,Q components
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of RX[n] · TX[n]∗ becomes:

ˆ⎡
⎣

Re {RX[n] · TX[n]∗}
Im {RX[n] · TX[n]∗}
|TX[n]|2 |RX[n]|2

⎤
⎦ =

(
Ân

T
Ân

)−1

· Ân
T ·

⎡
⎢⎣

p̃1[n]
p̃2[n]
p̃3[n]
p̃4[n]

⎤
⎥⎦

(18)

IV. RESULTS

The algorithm was implemented in MATLAB and ran on a

PC connected to a lab prototype of a 60 GHz radar (as shown

in Fig. 3). The characteristics of the transmission signal are

as follows:

• Chirp signal that covers frequency range 57-63 GHz

(1200 discrete frequencies in steps of 5 MHz)

• Frame duration: ~2 msec

• Calibration done on 255 frames, during which a target

was moved in front of the radar

Fig. 4 shows the IFFT of raw baseband signal, i.e. samples of

RX[n] · TX[n]∗, where TX(t) and RX(t) are the complex

envelopes of the transmitted and received signals from the

setup, respectively. The strong signal component in the IFFT

is due to the (single) target in front of the radar. On the other

hand, the image signal was created due to the impairments of

six-port device in the setup. This image can be interpreted as a

phantom target, especially when calibrating the delay of long

cables.

After applying the proposed algorithm on the raw samples,

the image power decreases by more than 25 dB (Fig. 5).

Fig. 3 Picture of 60GHz radar lab prototype, used for testing

V. CONCLUSIONS

This paper proposes a method that allows implementation

of a high performance Millimeter-Wave radar, that is truly

low-power, low-complexity, using the six-port architecture

for analog multiplication of received and transmitted signal.

Simulation and testing of a lab prototype of 60 GHz radar

shows a dynamic range improvement of over 25 dB, when

Fig. 4 Spectrum of complex envelope of baseband signal - raw samples
from radar setup

Fig. 5 Spectrum of complex envelope of baseband signal - after correction
(using proposed method)

using the invented estimation and correction algorithm. The

result is a much cleaner radar image, almost free from false

targets.

APPENDIX A

DIODE AS AN ENVELOPE DETECTOR

Operating a diode in its square-law regime, we get the
following relationship between its input and output voltage
(x(t) and y(t)):

y(t) = αx2(t) + βx(t) (19)

The output of the diode is followed by a base-band low-pass

filter, so for the case of RF band-pass signal, the term βx(t)
vanishes due to its high frequency.

The input band-pass signal can be written as:

x(t) = Re
{
xc(t) · ejωct

}

where xc(t) is the complex envelope of the signal, and ωc
is a center frequency. Using the complex numbers identity:
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Re2 {z} = 1
2 |z|2 + 1

2Re
{
z2
}

we rewrite the diode’s output:

y(t) =
α

2
|xc(t)|2 + α

2
Re

{
x2
c(t) · ej2ωct

}
(20)

Note that the term α
2Re

{
x2
c(t) · ej2ωct

}
is a band-pass

signal at frequency 2ωc, so it is filtered by the low-pass filter.
Eventually, we get:

y(t) ≈ α

2
|xc(t)|2 (21)

We conclude that the output of the diode acts as squared

magnitude of the complex envelope of the input signal. In

other words, it acts as a (squared) envelope detector.
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