Search results for: diaphysis diameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1433

Search results for: diaphysis diameter

383 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 246
382 Design and Analysis of Deep Excavations

Authors: Barham J. Nareeman, Ilham I. Mohammed

Abstract:

Excavations in urban developed area are generally supported by deep excavation walls such as; diaphragm wall, bored piles, soldier piles and sheet piles. In some cases, these walls may be braced by internal braces or tie back anchors. Tie back anchors are by far the predominant method for wall support, the large working space inside the excavation provided by a tieback anchor system has a significant construction advantage. This paper aims to analyze a deep excavation bracing system of contiguous pile wall braced by pre-stressed tie back anchors, which is a part of a huge residential building project, located in Turkey/Gaziantep province. The contiguous pile wall will be constructed with a length of 270 m that consists of 285 piles, each having a diameter of 80 cm, and a center to center spacing of 95 cm. The deformation analysis was carried out by a finite element analysis tool using PLAXIS. In the analysis, beam element method together with an elastic perfect plastic soil model and Soil Hardening Model was used to design the contiguous pile wall, the tieback anchor system, and the soil. The two soil clusters which are limestone and a filled soil were modelled with both Hardening soil and Mohr Coulomb models. According to the basic design, both soil clusters are modelled as drained condition. The simulation results show that the maximum horizontal movement of the walls and the maximum settlement of the ground are convenient with 300 individual case histories which are ranging between 1.2mm and 2.3mm for walls, and 15mm and 6.5mm for the settlements. It was concluded that tied-back contiguous pile wall can be satisfactorily modelled using Hardening soil model.

Keywords: deep excavation, finite element, pre-stressed tie back anchors, contiguous pile wall, PLAXIS, horizontal deflection, ground settlement

Procedia PDF Downloads 225
381 Electrochemotherapy of Portal Vein Tumor Thrombus as Dowstaging to Liver Transplantation

Authors: Luciano Tarantino, Emanuele Balzano, Paolo Tarantino, Riccardo Aurelio Nasto, Aurelio Nasto

Abstract:

Liver transplantation (OLT) is contraindicate in Portal Vein tumor Thrombosis (PVTT) from Hepatocellular Carcinoma at hepatic hilum(pH-HCC) Surgery,Thermal ablation and chemotherapy show poorer outcomes Electrochemotherapy (ECT) has been successfully used in patients with pH-HCC with PVTT. We report the results of ECT as downstaging aimed to definitive cure by OLT. F.P. 53 years HBV related Cirrhosis Child-Pugh B7 class; EGDS F2 aesophageal Varices. Diabetes. April 2016 : Enhanced Computed Tomography (CT) detected HCC(n.3 nodules in VII-VIII-VI;diameter range=25 cm) and PVTT of right portal vein. The patient was considered ineligible for OLT. May 2016: first ablation session with percutaneous Radiofrequency-ablation(RFA) of 3 HCC-nodules . August 2016: second ablation session with ECT of PVTT. CT october 2016: disappearance of PVTT and patent right portal vein. No intraparenchymal recurrence. CT march 2017: No recurrence in portal vein and in the left lobe. local recurrence in the VII-VIII segments. May 2017 : transarterial chemoembolization (TACE) of right lobe recurrences. CT October 2017: patent right portal vein. No recurrence. The patient was reconsidered for OLT. He underwent OLT in April 2018. At 36-months follow-up , no intrahepatic recurrence of HCC occurred. March 2021: enhanced CT and PET/CT detected a single small nodule (1.5 cm) uptaking tracer in the left upper pulmonary lobe, no hepatic recurrence . CT-guided FNB showed metastasis from HCC . June 2021: left lung upper lobectomy . At the current time the patient is alive and recurrence-free at 64 months follow-up. ECT Could be aneffective technique as pre-OLT dowstaging in HCC with PVTT.

Keywords: liver tumor ablation, interventional ultrasound, electrochemotherapy, liver transplantation

Procedia PDF Downloads 89
380 Serum MicroRNA and Inflammatory Mediators: Diagnostic Biomarkers for Endometritis in Arabian Mares

Authors: Sally Ibrahim, Mohamed Hedia, Mohamed Taqi, Mohamed Derbala, Karima Mahmoud, Youssef Ahmed, Sayed Ismail, Mohamed El-Belely

Abstract:

The identification and quantification of serum microRNA (miRNA) from mares with endometritis might serve as useful and implementable clinical biomarkers for the early diagnosis of endometiritis. Aims of the current study were (I) to study the expression pattern of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205, and (II) to determine the levels of interleukin 6 (IL-6), prostaglandins (PGF₂α and PGE₂), in the serum of Arabian mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares (4-14 years old). Mares were divided into 48 sub-fertile mares suspected of endometritis and 32 fertile at stud farms. The criteria for mares to be enrolled in the endometritis group were that they had been bred three or more times unsuccessfully in the breeding season or had a history of more than one year of reproductive failure. In addition, two or more of the following criteria on a checklist were present: abnormal clinical findings, transrectal ultrasonographic uterine examination showed abnormal fluid in the uterus (echogenic or ≥2 cm in diameter), positive endometrial cytology; and bacterial and/or fungal growth. Serum samples were collected for measuring IL-6, PGF₂α, and PGE₂ concentrations, as well as serum miRNA isolation and quantitative real-time PCR. Serum concentrations of IL-6, PGE₂, and PGF₂α were higher (P ≤ 0.001) in mares with endometritis compared to the control healthy ones. The expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 increased (P≤0.001) in mares with endometritis compared to the control ones. To the best of our knowledge, this is the first study that revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE₂, and PGF₂α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares. Moreover, estimation of the serum concentrations of serum miRNA, IL-6, PGE₂, and PGF₂α is a promising recommended tool during the breeding soundness examination in mares.

Keywords: Arabian Mares, endometritis, inflammatory mediators, serum miRNA

Procedia PDF Downloads 147
379 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 233
378 Alcohol Septal Ablation in a 19-Year-Old with Hypertrophic Obstructive Cardiomyopathy Patient: A Case Report

Authors: Christine Ysabelle G. Roman, Pauline Torres

Abstract:

Background: Hypertrophic cardiomyopathy is a disease of marked heterogeneity. It is a genetically determined heart disease characterized by significant myocardium hypertrophy that results in diastolic dysfunction, left ventricular outflow tract obstruction, and an increased risk of arrhythmias. The primary treatment in patients with such conditions is negative inotropic drugs, such as beta-blockers, calcium channel antagonists, and disopyramide. However, for those who remain symptomatic and need septal reduction therapy, surgical septal myectomy or alcohol septal ablation are options. Case Summary: A 19 – year old female presented in the authors’ institution with easy fatigability. The consult was done a year prior, and 2D echocardiography was requested which showed concentric left ventricular hypertrophy, asymmetrically hypertrophied interventricular septum (IVS) with the largest diameter of 3.3cm & subaortic dynamic obstruction with a maximum gradient of 47 mmHg. A repeat echo a year later showed asymmetric septal hypertrophy (IVS measuring at 3cm) with the systolic anterior motion of anterior mitral valve leaflet and left ventricular outflow tract obstruction (peak gradient of 50mmHg). The patient then underwent alcohol septal ablation and was discharged stable after four days of admission. Conclusion: Hypertrophic obstructive cardiomyopathy, a cardiovascular genetic disease, results in various patterns of left ventricular hypertrophy and abnormality of mitral valve apparatus. The patient is managed medically initially. However, despite optimal drug therapy and significant left ventricular outflow tract obstruction, significant heart failure symptoms or syncope require invasive treatment.

Keywords: hypertrophic obstructive cardiomyopathy, left ventricular outflow tract obstruction, alcohol septal ablation, alcohol

Procedia PDF Downloads 53
377 The Relationship between Size of Normal and Cystic Bovine Ovarian Follicles with Follicular Fluid Levels of Nitric Oxide and Estradiol

Authors: Hamidreza Khodaei, Behnaz Mahdavi, Leila Karshenas

Abstract:

Nitric oxide (NO) is a small fast acting neurotransmitter, which is synthesized From L-arginine by nitric oxide synthase. Studies show that NO affects a wide range of reproductive functions. Steroidal hormones synthesis, LH surge during ovulation, follicular growth and ovulation are all affected by NO. Therefore, the objective of this study was to evaluate the relationship between NO and estradiol (E2) production in ovarian follicles and cysts in bovines. Two experiment groups were formed and serum and follicular fluid levels Of NO and estradiol (E2) was measured. In the first group, follicular fluids were obtained from 30 slaughtered cows. Follicles were divided into three groups according to follicular diameter: Small follicles, <5 mm, medium-sized follicles, 5 to 10 mm, and large follicles, >10 mm. 30 follicles were randomly selected within each group. Blood samples were obtained via jugular vein. NO concentrations in blood and ovarian follicular fluids were measured by Griess reaction method and radio-immunoassay respectively. In the second group: 12 cows in follicular phase and with cystic follicles were selected and a cystic follicle was obtained from each. NO and E2 levels were measured as done for the first experiment group. The data were analyzed by SAS software using ANOVA and Duncan’s test. NO concentrations of follicular fluids from large follicles were significantly higher than those of the medium and small-sized ones. There were significant differences in the concentrations of nitrite and nitrate (Stable metabolites of NO) between large and cystic follicles, with extremely low NO and high E2 levels in cystic follicles (p<0.01).The results suggest that paracrine effects of NO may play an important role in the control of ovarian follicle growth and development of cystic follicles in bovines. It seems that NO dictates its effects through inhibition of ovarian steroidal synthesis.

Keywords: nitric oxide, estradiol, cystic follicle, cow, oogenesis, oocyte maturation, follicular fluid

Procedia PDF Downloads 213
376 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter

Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares

Abstract:

In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.

Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management

Procedia PDF Downloads 113
375 Development of a Model for Predicting Radiological Risks in Interventional Cardiology

Authors: Stefaan Carpentier, Aya Al Masri, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis, and ulceration to appear. In order to prevent these deterministic effects, a prediction of the peak skin-dose for the patient is important in order to improve the post-operative care to be given to the patient. The objective of this study is to estimate, before the intervention, the patient dose for ‘Chronic Total Occlusion (CTO)’ procedures by selecting relevant clinical indicators. Materials and methods: 103 procedures were performed in the ‘Interventional Cardiology (IC)’ department using a Siemens Artis Zee image intensifier that provides the Air Kerma of each IC exam. Peak Skin Dose (PSD) was measured for each procedure using radiochromic films. Patient parameters such as sex, age, weight, and height were recorded. The complexity index J-CTO score, specific to each intervention, was determined by the cardiologist. A correlation method applied to these indicators allowed to specify their influence on the dose. A predictive model of the dose was created using multiple linear regressions. Results: Out of 103 patients involved in the study, 5 were excluded for clinical reasons and 2 for placement of radiochromic films outside the exposure field. 96 2D-dose maps were finally used. The influencing factors having the highest correlation with the PSD are the patient's diameter and the J-CTO score. The predictive model is based on these parameters. The comparison between estimated and measured skin doses shows an average difference of 0.85 ± 0.55 Gy for doses of less than 6 Gy. The mean difference between air-Kerma and PSD is 1.66 Gy ± 1.16 Gy. Conclusion: Using our developed method, a first estimate of the dose to the skin of the patient is available before the start of the procedure, which helps the cardiologist in carrying out its intervention. This estimation is more accurate than that provided by the Air-Kerma.

Keywords: chronic total occlusion procedures, clinical experimentation, interventional radiology, patient's peak skin dose

Procedia PDF Downloads 114
374 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 296
373 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment

Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto

Abstract:

Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.

Keywords: carbon stock, forest inventory, LiDAR, tree count

Procedia PDF Downloads 354
372 Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study

Authors: Rachmat Mauludin, Nurmazidah

Abstract:

Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes.

Keywords: famotodine, SLN, high speed homogenization, particle size, release study

Procedia PDF Downloads 831
371 Effect of Moringa Oleifera on Liveweight Reproductive Tract Dimention of Giant African Land Snail (Archachatina marginata)

Authors: J. A. Abiona, O. O. Fabinu, O. O. Ehimiyein, A. O. Ladokun, M. O. Abioja, J. O. Daramola, O. E. Oke, O. A. Osinowo, O. M. Onagbesan

Abstract:

A study was conducted on the effect of Moringa oleifera on liveweight and reproductive tract dimension of Giant African Land Snail (Archachatina marginata). Thirty two snails (32) with weight range of 100 – 150 g were used for this study. Eight snails (8) were subjected to each of the four treatments which were: Concentrate only, concentrate + 100g of Moringa oleifera, concentrate + 200g of Moringa oleifera and concentrate + 300g of Moringa oleifera. Parameters monitored were: Shell length, shell width, shell circumference and weekly live weight. Reproductive tract dimension taken include: Organ weight (ORGWT), reproductive tract weight (REPTWT), reproductive tract length (REPTLNT), ovo-tesis weight (OVOWT), edible part weight (EDPTWT), albumen weight (ALBWT) and albumen length (ALBLNT). Shell dimensions and the live weight were measured and recorded on a weekly basis with a tape rule and a sensitive weighing scale. After nine weeks, six snails were randomly selected from each treatment and dissected. Their reproductive tracts were removed and dimensions were taken. The result showed that ORGWT, OVOWT, ALBWT, ALBLNT, REPTLNT and REPTWT were not significantly affected (P>0.05) by different levels of Moringa oleifera inclusions with concentrate. However, Moringa oleifera inclusion with concentrate at different levels had significant effect (P<0.001) on Live weight, shell length and shell diameters of the animal. Snails given 300 g of Moringa oleifera per kilogramme of concentrate gave the highest live weight and shell length together with shell diameter. It was however recommended from this study that inclusion of Moringa oleifera leave meal into snail feed at 300 g per kg of concentrate would enhance live weight and shell parameters (length and width).

Keywords: reproductive tract, giant African land snails, Moringa oleifera, live weight, shell dimension

Procedia PDF Downloads 454
370 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 256
369 Formation of ZnS/ZnO Heterojunction for Photocatalytic Hydrogen Evolution Using Partial Oxidation and Chemical Precipitation Synthesis Methods

Authors: Saba Didarataee, Abbas Ali Khodadadi, Yadollah Mortazavi, Fatemeh Mousavi

Abstract:

Photocatalytic water splitting is one of the most attractive alternative methods for hydrogen evolution. A variety of nanoparticle engineering techniques were introduced to improve the activity of semiconductor photocatalysts. Among these methods, heterojunction formation is an appealing method due to its ability to effectively preventing electron-hole recombination and improving photocatalytic activity. Reaching an optimal ratio of the two target semiconductors for the formation of heterojunctions is still an open question. Considering environmental issues as well as the cost and availability, ZnS and ZnO are frequently studied as potential choices. In this study, first, the ZnS nanoparticle was synthesized in a hydrothermal process; the formation of ZnS nanorods with a diameter of 14-30 nm was confirmed by field emission scanning electron microscope (FESEM). Then two different methods, partial oxidation and chemical precipitation were employed to construct ZnS/ZnO core-shell heterojunction. X-ray diffraction (XRD), BET, and diffuse reflectance spectroscopy (DRS) analysis were carried out to determine crystallite phase, surface area, and bandgap of photocatalysts. Furthermore, the temperature of oxidation was specified by a temperature programmed oxidation (TPO) and was fixed at 510℃, at which mild oxidation occurred. The bandgap was calculated by the Kubelka-Munk method and decreased by increasing oxide content from 3.53 (pure ZnS) to 3.18 (pure ZnO). The optimal samples were determined by testing the photocatalytic activity of hydrogen evolution in a quartz photoreactor with side irradiation of UVC lamps with a wavelength of 254 nm. In both procedures, it was observed that the photocatalytic activity of the ZnS/ZnO composite was sensibly higher than the pure ZnS and ZnO, which is attributed to forming a type-II heterostructure. The best ratio of oxide to sulfide was 0.24 and 0.37 in partial oxidation and chemical precipitation, respectively. The highest hydrogen evolution was 1081 µmol/gr.h, gained from partial oxidizing of ZnS nanoparticles at 510℃ for 30 minutes.

Keywords: heterostructure, hydrogen, partial oxidation, photocatalyst, water splitting, ZnS

Procedia PDF Downloads 107
368 Semi-pilot Biooxidation of Refractory Sulfide-Gold Ore Using Ferroplasma Acidophilum: D-(+)-Sucsore as a Booster and Columns Tests

Authors: Mohammad Hossein Karimi Darvanjooghi, Sara Magdouli, Satinder Kaur Brar

Abstract:

It has been reported that the microorganism’s attachment to the surfaces of ore samples is a key factor that influences the biooxidation in pretreatment for recovery of gold in sulfide-bearing ores. In this research, the implementation of D-(+)-Sucrose on the biooxidation of ore samples were studied in a semi-pilot experiment. The experiments were carried out in five separate jacketed columns (1 m height and 6 cm diameter) at a constant temperature of 37.5 ̊C and saturated humidity. The airflow rate and recycling solution flow rate were studied in the research and the optimum operating condition were reported. The ore sample (0.49 ppm gold grade) was obtained from the Hammond Reef mine site containing 15 wt.% of pyrite which included 98% of gold according to the results of micrograph images. The experiments were continued up to 100 days while air flow rates were chosen to be 0.5, 1, 1.5, 2, and 3 lit/min and the recycling solution (Containing 9K media and 0.4 wt.% D-(+)-Sucrose) flow rates were kept 5, 8, 15 ml/hr. The results indicated that the addition of D-(+)-Sucrose increased the bacterial activity due to the overproduction of extracellular polymeric substance (EPS) up to 95% and for the condition that the recycling solution and air flow rate were chosen to be 8 ml/hr and 2 lit/min, respectively, the maximum pyrite dissolution of 76% was obtained after 60 days. The results indicated that for the air flow rates of 0.5, 1, 1.5, 2, and 3 lit/min the ratio of daily pyrite dissolution per daily solution lost were found to be 0.025, 0.033, 0.031, 0.043, and 0.009 %-pyrite dissolution/ml-lost. The implementation of this microorganisms and the addition of D-(+)-Sucrose will enhance the efficiency of gold recovery through faster biooxidation process and leads to decrease in the time and energy of operation toward desired target; however, still other parameters including particle size distribution, agglomeration, aeration design, chemistry of recycling solution need to be controlled and monitored for reaching the optimum condition.

Keywords: column tests, biooxidation, gold recovery, Ferroplasma acidophilum, optimization

Procedia PDF Downloads 47
367 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture

Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto

Abstract:

Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.

Keywords: crystallization, zirconium, hafnium, separation

Procedia PDF Downloads 402
366 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions

Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida

Abstract:

A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.

Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition

Procedia PDF Downloads 432
365 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts

Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici

Abstract:

Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).

Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles

Procedia PDF Downloads 155
364 Spawning Induction and Early Larval Development of the Giant Reef Clam Periglypta multicostata (Sowerby, 1835) under Controlled Conditions

Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes

Abstract:

Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the giant reef clam P. multicostata under controlled conditions. Bioassays were carried out with one adult batch (n= 8) with an average valvar length of 118,4 ± 5,8 mm, which were collected near of the Puerto Santa Rosa (2° 12' 30'' S, 80° 58' 28'' W), Santa Elena Province. During a short acclimation stage, the eight adults of giant reef clam P. multicostata were exposed to thermal stress. Briefly, the experimental protocol for spawning induction was based on the application of 20°C for 1 h and 30°C for 1 h on P. multicostata broodstock at least three consecutive times by one day. After spawning, collected sexual material was released for external fertilization process. After the delivery of gametes, it was achieved 3,25 × 10⁶ viable zygotes. As results, fertilized eggs had 56 µm diameter; while first and second cell divisions were observed to 2,5 h post-fertilization, with individual average length of 68 ± 5 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 73 ± 4 µm and trochophore stage at 15 h post-fertilization with individual average length of 75 ± 4 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 82 ± 6 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 148 ± 6 µm. These pioneering results worldwide can strengthen the local conservation process of the overexploited P. multicostata and to encourage its production for commercial purposes.

Keywords: Ecuador, larval development, Periglypta multicostata, spawning induction

Procedia PDF Downloads 112
363 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport

Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer

Abstract:

Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.

Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets

Procedia PDF Downloads 123
362 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 299
361 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 219
360 Treatment of a Galvanization Wastewater in a Fixed-Bed Column Using L. hyperborean and P. canaliculata Macroalgae as Natural Cation Exchangers

Authors: Tatiana A. Pozdniakova, Maria A. P. Cechinel, Luciana P. Mazur, Rui A. R. Boaventura, Vitor J. P. Vilar.

Abstract:

Two brown macroalgae, Laminaria hyperborea and Pelvetia canaliculata, were employed as natural cation exchangers in a fixed-bed column for Zn(II) removal from a galvanization wastewater. The column (4.8 cm internal diameter) was packed with 30-59 g of previously hydrated algae up to a bed height of 17-27 cm. The wastewater or eluent was percolated using a peristaltic pump at a flow rate of 10 mL/min. The effluent used in each experiment presented similar characteristics: pH of 6.7, 55 mg/L of chemical oxygen demand and about 300, 44, 186 and 244 mg/L of sodium, calcium, chloride and sulphate ions, respectively. The main difference was nitrate concentration: 20 mg/L for the effluent used with L. hyperborean and 341 mg/L for the effluent used with P. canaliculata. The inlet zinc concentration also differed slightly: 11.2 mg/L for L. hyperborean and 8.9 mg/L for P. canaliculata experiments. The breakthrough time was approximately 22.5 hours for both macroalgae, corresponding to a service capacity of 43 bed volumes. This indicates that 30 g of biomass is able to treat 13.5 L of the galvanization wastewater. The uptake capacities at the saturation point were similar to that obtained in batch studies (unpublished data) for both algae. After column exhaustion, desorption with 0.1 M HNO3 was performed. Desorption using 9 and 8 bed volumes of eluent achieved an efficiency of 100 and 91%, respectively for L. hyperborean and P. canaliculata. After elution with nitric acid, the column was regenerated using different strategies: i) convert all the binding sites in the sodium form, by passing a solution of 0.5 M NaCl, until achieve a final pH of 6.0; ii) passing only tap water in order to increase the solution pH inside the column until pH 3.0, and in this case the second sorption cycle was performed using protonated algae. In the first approach, in order to remove the excess of salt inside the column, distilled water was passed through the column, leading to the algae structure destruction and the column collapsed. Using the second approach, the algae remained intact during three consecutive sorption/desorption cycles without loss of performance.

Keywords: biosorption, zinc, galvanization wastewater, packed-bed column

Procedia PDF Downloads 291
359 Investigation of Enterotoxigenic Staphylococcus aureus in Kitchen of Catering

Authors: Çiğdem Sezer, Aksem Aksoy, Leyla Vatansever

Abstract:

This study has been done for the purpose of evaluation of public health and identifying of enterotoxigenic Staphyloccocus aureus in kitchen of catering. In the kitchen of catering, samples have been taken by swabs from surface of equipments which are in the salad section, meat section and bakery section. Samples have been investigated with classical cultural methods in terms of Staphyloccocus aureus. Therefore, as a 10x10 cm area was identified (salad, cutting and chopping surfaces, knives, meat grinder, meat chopping surface) samples have been taken with sterile swabs with helping FTS from this area. In total, 50 samples were obtained. In aseptic conditions, Baird-Parker agar (with egg yolk tellurite) surface was seeded with swabs. After 24-48 hours of incubation at 37°C, the black colonies with 1-1.5 mm diameter and which are surrounded by a zone indicating lecithinase activity were identified as S. aureus after applying Gram staining, catalase, coagulase, glucose and mannitol fermentation and termonuclease tests. Genotypic characterization (Staphylococcus genus and S.aureus species spesific) of isolates was performed by PCR. The ELISA test was applied to the isolates for the identification of staphylococcal enterotoxins (SET) A, B, C, D, E in bacterial cultures. Measurements were taken at 450 nm in an ELISA reader using an Ridascreen-Total set ELISA test kit (r-biopharm R4105-Enterotoxin A, B, C, D, E). The results were calculated according to the manufacturer’s instructions. A total of 50 samples of 97 S. aureus was isolated. This number has been identified as 60 with PCR analysis. According to ELISA test, only 1 of 60 isolates were found to be enterotoxigenic. Enterotoxigenic strains were identified from the surface of salad chopping and cutting. In the kitchen of catering, S. aureus identification indicates a significant source of contamination. Especially, in raw consumed salad preparation phase of contamination is very important. This food can be a potential source of food-borne poisoning their terms, and they pose a significant risk to consumers have been identified.

Keywords: Staphylococcus aureus, enterotoxin, catering, kitchen, health

Procedia PDF Downloads 369
358 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes

Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt

Abstract:

Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.

Keywords: closed aeroponic systems, fruit quality, nutrient dynamics, substrate waste reduction, urban farming systems, water savings

Procedia PDF Downloads 250
357 Designing a Crowbar for Women: An Ergonomic Approach

Authors: Prakash Chandra Dhara, Rupa Maity, Mousumi Chatterjee

Abstract:

Crowbars are used for the gardening purpose. The same tools are used by both male and female gardeners. The existing crowbars are suitable for the female gardeners. The present study was aimed to design a crowbar, which was required to use by the women for the gardening purpose, from the viewpoints of ergonomics. The study was carried out on 50 women in different villages of Howrah districts in West Bengal state. Different models of existing crowbars which were commonly used by the women were collected and evaluated by examining their shape and size. The problems of using existing crowbar were assessed by direct observation during its operation. The musculoskeletal disorder of the subjects for using the crowbar was evaluated by modified Nordic questionnaire method. The anthropometric dimensions, especially hand dimension, of the subjects were taken in standardized static conditions. Considering the problems of using the existing crowbars some design concepts were developed and accordingly three prototypes models (P1, P2, P3) of crowbar were prepared for designing of a modified crowbar for women. Psychophysical analysis of those prototypes was made by paired comparison tests. In the above test subjective preference for different characteristics of the crowbar, e.g., length, weight, length and breadth of the blade, handle diameter, position of the handle, were determined. From the results of the paired comparison test and percentile values of hand dimensions, a modified design of crowbar was suggested. The prototype model P1 possessed more preferred characteristics of the tool than that of other prototype models. In the final design, the weight of the tool and length of the blade was reduced from that of the existing crowbar. Other dimensions were also changed. Two handles were suggested in the redesigned tool for better gripping and operation. The modified crowbar was evaluated by studying the body joint angles, viz., wrist, shoulder and elbow, for assessing the suitability of the design. It was concluded that the redesigned crowbar was suitable for women’s use.

Keywords: body dimension, crowbar, ergo-design, women, hand anthropometry

Procedia PDF Downloads 227
356 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet

Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay

Abstract:

The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.

Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD

Procedia PDF Downloads 87
355 Physical Characterization of SnO₂ Films Prepared by the Rheotaxial Growth and Thermal Oxidation (RGTO) Method

Authors: A. Kabir, D. Boulainine, I. Bouanane, N. Benslim, B. Boudjema, C. Sedrati

Abstract:

SnO₂ is an n-type semiconductor with a direct gap of about 3.6 eV. It is largely used in several domains such as nanocrystalline photovoltaic cells. Due to its interesting physic-chemical properties, this material was elaborated in thin film forms using different deposition techniques. It was found that SnO₂ properties were directly affected by the deposition method parameters. In this work, the RGTO method (Rheotaxial Growth and Thermal Oxidation) was used to deposit elaborate SnO₂ thin films. This technique consists on thermal oxidation of the Sn films deposited onto a substrate heated to a temperature close to Sn melting point (232°C). Such process allows the preparation of high porosity tin oxide films which are very suitable for the gas sensing. The films structural, morphological and optical properties pre and post thermal oxidation were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) respectively. XRD patterns showed a polycrystalline structure of the cassiterite phase of SnO₂. The grain growth was found affected by the oxidation temperature. This grain size evolution was confronted to existing grain growth models in order to understand the growth mechanism. From SEM images, the as deposited Sn film was formed of difference diameter spherical agglomerations. As a function of the oxidation temperature, these spherical agglomerations shape changed due to the introduction of oxygen ions. The deformed spheres started to interconnect by forming bridges between them. The volume porosity, determined from the UV-Visible reflexion spectra, Changes as a function of the oxidation temperature. The variation of the crystalline fraction, determined from FTIR spectra, correlated with the variation of both the grain size and the volume porosity.

Keywords: tin oxide, RGTO, grain growth, volume porosity, crystalline fraction

Procedia PDF Downloads 232
354 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito

Abstract:

Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.

Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP

Procedia PDF Downloads 391