Search results for: clay brick waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3263

Search results for: clay brick waste

3023 Comparison of E-Waste Management in Switzerland and in Australia: A Qualitative Content Analysis

Authors: Md Tasbirul Islam, Pablo Dias, Nazmul Huda

Abstract:

E-waste/Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams across the globe. This paper aims to compare the e-waste management system in Switzerland and Australia in terms of four features - legislative initiatives, disposal practice, collection and financial mechanisms. The qualitative content analysis is employed as a research method in the study. Data were collected from various published academic research papers, industry reports, and web sources. In addition, a questionnaire survey is conducted in Australia to understand the public awareness and opinions on the features. The results of the study provide valuable insights to policymakers in Australia developing better e-waste management system in conjunction with the public consensus, and the state-of-the-art operational strategies currently being practiced in Switzerland.

Keywords: E-waste management, WEEE, awareness, pro-environmental behavior, Australia, Switzerland

Procedia PDF Downloads 250
3022 Waste Generation in Iranian Building Industry: Addressing a Theory

Authors: Golnaz Moghimi, Alireza Afsharghotli, Alireza Rezaei

Abstract:

Construction waste has been gradually increased as a result of upsizing construction projects which are occurred within the lifecycle of buildings. Since waste management is a major priority and has profound impacts on the volume of waste generated in construction stage, the majority of efforts have been attempted to reuse, recycle and reduce waste. However, there is still room to study on lack of sufficient knowledge about waste management in construction industry. This paper intends to provide an insight into the effect of project management knowledge areas on waste management solely on construction stage. To this end, a survey among Iranian building construction industry contractors was conducted to identify the effectiveness of project management knowledge areas on three jobsite key factors including ‘Site activity’, ‘Training’, and ‘Awareness’. As a result, four management disciplines were identified as most influential ones on amount of construction waste. These disciplines were Project Cost Management, Quality Management, Human Resource Management, and Integration Management. Based on the research findings, a new model was presented to develop effective construction waste strategies.

Keywords: awareness, PMBOK, site activity, training, waste management

Procedia PDF Downloads 311
3021 Recovery of Waste: Feasibility and Sustainable Application of Residues from Drinking Water Treatment in Building Materials

Authors: Flavio Araujo, Julio Lima, Paulo Scalize, Antonio Albuquerque, Isabela Santos

Abstract:

The aim of this study was to perform the physicochemical characterizations of the residue generated in the Meia-Ponte Water Treatment Plant, seeking to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal as the launching of the residue in the rivers, disposal in landfills or burning it, because such ways pollute watercourses, ground and air. The analyzes performed: Granulometry, identification of clay minerals, Scanning Electron Microscopy, and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: recovery of waste, residue, sustainable, water treatment plant, WTR

Procedia PDF Downloads 503
3020 Impact of Agricultural Waste Utilization and Management on the Environment

Authors: Ravi Kumar

Abstract:

Agricultural wastes are the non-product outcomes of agricultural processing whose monetary value is less as compared to its collection cost, transportation, and processing. When such agricultural waste is not properly disposed of, it may damage the natural environment and cause detrimental pollution in the atmosphere. Agricultural development and intensive farming methods usually result in wastes that remarkably affect the rural environments in particular and the global environment in general. Agricultural waste has toxicity latent to human beings, animals, and plants through various indirect and direct outlets. The present paper explores the various activities that result in agricultural waste and the routes that can utilize the agricultural waste in a manageable manner to reduce its adverse impact on the environment. Presently, the agricultural waste management system for ecological agriculture and sustainable development has emerged as a crucial issue for policymakers. There is an urgent need to consider agricultural wastes as prospective resources rather than undesirable in order to avoid the transmission and contamination of water, land, and air resources. Waste management includes the disposal and treatment of waste with a view to eliminate threats of waste by modifying the waste to condense the microbial load. The study concludes that proper waste utilization and management will facilitate the purification and development of the ecosystem and provide feasible biofuel resources. This proper utilization and management of these wastes for agricultural production may reduce their accumulation and further reduce environmental pollution by improving environmental health.

Keywords: agricultural waste, utilization, management, environment, health

Procedia PDF Downloads 61
3019 Microbial Evaluation of Geophagic and Cosmetic Clays from Southern and Western Nigeria: Potential Natural Nanomaterials

Authors: Bisi-Johnson, Mary A., Hamzart A. Oyelade, Kehinde A. Adediran, Saheed A. Akinola

Abstract:

Geophagic and cosmetic clays are among potential nano-material which occur naturally and are of various forms. The use of these nano-clays is a common practice in both rural and urban areas mostly due to tradition and medicinal reasons. These naturally occurring materials can be valuable sources of nano-material by serving as nano-composites. The need to ascertain the safety of these materials is the motivation for this research. Physical Characterization based on the hue value and microbiological qualities of the nano-clays were carried out. The Microbial analysis of the clay samples showed considerable contamination with both bacteria and fungi with fungal contaminants taking the lead. This observation may not be unlikely due to the ability of fungi species to survive harsher growth conditions than bacteria. 'Atike pupa' showed no bacterial growth. The clay with the largest bacterial count was Calabash chalk (Igbanke), while that with the highest fungal count was 'Eko grey'. The most commonly isolated bacteria in this study were Clostridium spp. and Corynebacterium spp. while fungi included Aspergillus spp. These results are an indication of the need to subject these clay materials to treatments such as heating before consumption or topical usage thereby ascertaining their safety.

Keywords: nano-material, clay, microorganism, quality

Procedia PDF Downloads 353
3018 Analyzing Irbid’s Food Waste as Feedstock for Anaerobic Digestion

Authors: Assal E. Haddad

Abstract:

Food waste samples from Irbid were collected from 5 different sources for 12 weeks to characterize their composition in terms of four food categories; rice, meat, fruits and vegetables, and bread. Average food type compositions were 39% rice, 6% meat, 34% fruits and vegetables, and 23% bread. Methane yield was also measured for all food types and was found to be 362, 499, 352, and 375 mL/g VS for rice, meat, fruits and vegetables, and bread, respectively. A representative food waste sample was created to test the actual methane yield and compare it to calculated one. Actual methane yield (414 mL/g VS) was greater than the calculated value (377 mL/g VS) based on food type proportions and their specific methane yield. This study emphasizes the effect of the types of food and their proportions in food waste on the final biogas production. Findings in this study provide representative methane emission factors for Irbid’s food waste, which represent as high as 68% of total Municipal Solid Waste (MSW) in Irbid, and also indicate the energy and economic value within the solid waste stream in Irbid.

Keywords: food waste, solid waste management, anaerobic digestion, methane yield

Procedia PDF Downloads 172
3017 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 259
3016 Optimization of Maritime Platform Transport Problem of Solid, Special and Dangerous Waste

Authors: Ocotlán Díaz-Parra, Jorge A. Ruiz-Vanoye, Alejandro Fuentes-Penna, Beatriz Bernabe-Loranca, Patricia Ambrocio-Cruz, José J. Hernández-Flores

Abstract:

The Maritime Platform Transport Problem of Solid, Special and Dangerous Waste consist of to minimize the monetary value of carry different types of waste from one location to another location using ships. We offer a novel mathematical, the characterization of the problem and the use CPLEX to find the optimal values to solve the Solid, Special and Hazardous Waste Transportation Problem of offshore platforms instances of Mexican state-owned petroleum company (PEMEX). The set of instances used are WTPLib real instances and the tool CPLEX solver to solve the MPTPSSDW problem.

Keywords: oil platform, transport problem, waste, solid waste

Procedia PDF Downloads 442
3015 Technologies in Municipal Solid Waste Management in Indian Towns

Authors: Gargi Ghosh

Abstract:

Municipal solid waste management (MSWM) is an obligatory function of the local self-government as per the Indian constitution, and this paper gives a glimpse of the system in Indian towns focusing on its present state and use of technology in the system. The paper analyses the MSWM characteristics in 35 towns in the southern state of Karnataka. The lifestyle in these towns was found to be very sustainable with minimal disposal and considerable reuse. Average per capita waste generated in the towns ranged from 300 gm/person to 500 gm/person. The waste collection efficiency varied from 60% to 80%. The waste shows equal share of organic and non-organic waste composition with a low calorific value. Lack of capacity of the municipal body in terms of manpower, assets & knowledge and social consciousness were found to be two major issues in the system. Technical solutions in use in India at present are composting, organic re-reprocessing, bio-methanation, waste to energy etc. The tonnage of waste generated ranged from 8 TPD to 80 TPD. The feasibility of technology has been analysed in the context of the above characteristics. It was found that low calorific value and mixed nature of waste made waste to energy and bio methanation processes unsuitable. Composting – windrow and closed door was found best to treat the bulk of the waste. Organic–re-processors was planned for phase 2 of MSWM program in the towns with effective implementation of segregation at source. GPS and RFID technology was recommended for monitoring the collection process and increasing accountability of the citizens for effective implementation.

Keywords: solid waste management, Indian towns, waste management technology, waste charateristics

Procedia PDF Downloads 295
3014 Examining the Attitude and Behavior Towards Household Waste in China With the Theory of Planned Behavior and PEST Analysis

Authors: Yuxuan Liu, Jianli Hao, Ruoyu Zhang, Lin Lin, Nelsen Andreco Muljadi, Yu Song, Guobin Gong

Abstract:

With the increased municipal waste of China, household waste management (HWM) has become a key issue for sustainable development. In this study, an online survey questionnaire was conducted with the aim of assessing the current attitudes and behaviors of the households in China towards waste separationand recycling practices. Related influential factors are also determined within the context of the theory of planned behavior and PEST analysis. The survey received a total of 551 valid respondents. Results showed that the sample has an overall positive attitudes and behavior toward participating in HWM, but only 16.3% of themregularly segregate their waste. Society and policy are also found to be the two most impactful factors.

Keywords: householde waste management, theory of planned behavior, attitude, behavior

Procedia PDF Downloads 168
3013 Estimation of Biomedical Waste Generated in a Tertiary Care Hospital in New Delhi

Authors: Priyanka Sharma, Manoj Jais, Poonam Gupta, Suraiya K. Ansari, Ravinder Kaur

Abstract:

Introduction: As much as the Health Care is necessary for the population, so is the management of the Biomedical waste produced. Biomedical waste is a wide terminology used for the waste material produced during the diagnosis, treatment or immunization of human beings and animals, in research or in the production or testing of biological products. Biomedical waste management is a chain of processes from the point of generation of Biomedical waste to its final disposal in the correct and proper way, assigned for that particular type of waste. Any deviation from the said processes leads to improper disposal of Biomedical waste which itself is a major health hazard. Proper segregation of Biomedical waste is the key for Biomedical Waste management. Improper disposal of BMW can cause sharp injuries which may lead to HIV, Hepatitis-B virus, Hepatitis-C virus infections. Therefore, proper disposal of BMW is of upmost importance. Health care establishments segregate the Biomedical waste and dispose it as per the Biomedical waste management rules in India. Objectives: This study was done to observe the current trends of Biomedical waste generated in a tertiary care Hospital in Delhi. Methodology: Biomedical waste management rounds were conducted in the hospital wards. Relevant details were collected and analysed and sites with maximum Biomedical waste generation were identified. All the data was cross checked with the commons collection site. Results: The total amount of waste generated in the hospital during January 2014 till December 2014 was 6,39,547 kg, of which 70.5% was General (non-hazardous) waste and the rest 29.5% was BMW which consisted highly infectious waste (12.2%), disposable plastic waste (16.3%) and sharps (1%). The maximum quantity of Biomedical waste producing sites were Obstetrics and Gynaecology wards with a total Biomedical waste production of 45.8%, followed by Paediatrics, Surgery and Medicine wards with 21.2 %, 4.6% and 4.3% respectively. The maximum average Biomedical waste generated was by Obstetrics and Gynaecology ward with 0.7 kg/bed/day, followed by Paediatrics, Surgery and Medicine wards with 0.29, 0.28 and 0.18 kg/bed/day respectively. Conclusions: Hospitals should pay attention to the sites which produce a large amount of BMW to avoid improper segregation of Biomedical waste. Also, induction and refresher training Program of Biomedical waste management should be conducted to avoid improper management of Biomedical waste. Healthcare workers should be made aware of risks of poor Biomedical waste management.

Keywords: biomedical waste, biomedical waste management, hospital-tertiary care, New Delhi

Procedia PDF Downloads 218
3012 Effect of Pozzolanic Additives on the Strength Development of High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Ina Pundiene, Daira Erdmane

Abstract:

The aim of this research is to estimate effect of pozzolanic substitutes and their combination on the hydration heat and final strength of high performance concrete. Ternary cementitious systems with different ratios of ordinary Portland cement, silica fume and calcined clay were investigated. Local illite clay was calcined at temperature 700oC in rotary furnace for 20 min. It has been well recognized that the use of pozzolanic materials such as silica fume or calcined clay are recommended for high performance concrete for reduction of porosity, increasing density and as a consequence raising the chemical durability of the concrete. It has been found, that silica fume has a superior influence on the strength development of concrete, but calcined clay increase density and decrease size of dominating pores. Additionally it was found that the rates of pozzolanic reaction and calcium hydroxide consumption in the silica fume-blended cement pastes are higher than in the illite clay-blended cement pastes, it strongly depends from the amount of pozzolanic substitutes which are used. If the pozzolanic reaction is dominating then amount of Ca(OH)2 is decreasing. The identity and the amount of the phases present were determined from the thermal analysis (DTA) data. The hydration temperature of blended cement pastes was measured during the first 24 hours. Fresh and hardened concrete properties were tested. Compressive strength was determined and differential thermal analysis (DTA) was conducted of specimens at the age of 3, 14, 28 and 56 days.

Keywords: high performance concrete, pozzolanic additives, silica fume, ternary systems

Procedia PDF Downloads 349
3011 Solid Waste Management in the Town of Maradi in Niger Republic

Authors: Hassidou Saidou, Soulé Aminou

Abstract:

As in many towns of African countries, the waste management, in particularly solid constitutes a major problem for the municipal authorities of Maradi. The aim of this study is to make a diagnosis of the present system of waste management in the town of Maradi. The approach was consisted to some interviews with the municipal authorities, cleaning up and health technicians and some housewives investigations. According to the health technicians of the town, the causes due to the problem of waste management in Maradi town are: collecting capacity insufficient, lack of effective sensitization of people, undeveloped and uncontrolled rubbish dumps, lack of gutter and its maintenance, and insufficient and unqualified human resources. As to the authorities, they denounce always the attitude and the behavior of citizens on the waste issue. The waste evacuation is doing by municipal collecting or by depositing in wild rubbish dump. Some people eliminate their waste by burning or duping in the streets or in their houses. According to our investigations, 52% of population evacuates their waste daily. The satisfaction rate of municipal collecting is for 32%. The analysis showed that the present system of waste management in Maradi town is failing. As solutions, we proposed to equip the technical offices with appropriated material and financial means, reinforce the involved actor’s capacities and making in application the operatives regulations for the waste management.

Keywords: maradi, municipal authorities, Niger Republic, solid waste management

Procedia PDF Downloads 337
3010 Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production

Authors: Vladimira Vytlacilova

Abstract:

This study presents the latest research trend in the discipline of construction and demolition (C&D) waste management in Czech Republic. The results of research interest exhibit an increasing research interest in C&D waste management practices in recent years. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills, for reclamation or landscaping all the time. The quality of recycled aggregates for use in concrete construction depends on recycling practices. Classifications, composition and contaminants influence the mechanical-physical properties as well as environmental risks related to its utilization. The second part of contribution describes properties of fibre reinforced concrete with the full replacement of natural aggregate by recycled one (concrete or masonry rubble).

Keywords: construction and demolition waste, fibre reinforced concrete, recycled aggregate, recycling, waste management

Procedia PDF Downloads 277
3009 Study of Nanoclay Blends Based on PET/PEN Prepared by Reactive Extrusion

Authors: F. Zouai, F. Z. Benabid, S. Bouhelal, D. Benachour

Abstract:

A new route of preparation of compatible blends, based on poly(ethylene terephthalate)(PET)/poly(ethylenenaphthalene2,6-dicarboxylate) (PEN)/clay nanocomposites has been successfully performed in one step by reactive melt extrusion. To achieve this, untreated clay was first purified and functionalized “in situ” with a compound based on an organic peroxide/sulfur mixture and (tetra methyl thiuram disulfide) TMTD as accelerator or activator for sulfur. The PET and PEN materials were first mixed separately in the melt state with different amounts of functionalized clay. It was observed that the compositions PET/4 wt% clay and PEN/7.5 wt% clay showed total exfoliation. These completely exfoliated compositions, called nPET and nPEN, respectively, were used to prepare new nPET/nPEN nanoblends in the same mixing batch. The nPET/nPEN nanoblends were compared to neat blends of PET/PEN. The blends and the nanocomposites were characterized by different techniques: differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). The micro and nanostructure/properties relationships were investigated. The results of the WAXS measurements study showed that the exfoliation of tetrahedral nanolayers of clay was complete and the octahedral structure disappeared totally. From the different WAXS patterns, it is seen that all samples are amorphous phase. The thermal study showed that there are only one glass transition temperature Tg, one crystallization temperature Tc and one melting temperature Tm for every composition. This indicated that both PET/PEN blends and nPET/nPEN blends were compatible in the entire range of compositions. In addition, nPET/nPEN blends present lower Tc values and higher Tm values than the corresponding neat PET/PEN blends. The obtained results indicate that nPET/nPEN blends are somewhat different from the pure ones in nanostructure and behavior, thus showing the additional effect of nanolayers. The present study allowed establishing good correlations between the different measured properties.

Keywords: PET, PEN, montmorillonite, nanocomposites, exfoliation, reactive melt-mixing

Procedia PDF Downloads 268
3008 Multi-Criteria Decision-Making Evaluations for Oily Waste Management of Marine Oil Spill

Authors: Naznin Sultana Daisy, Mohammad Hesam Hafezi, Lei Liu

Abstract:

Nowadays, oily solid waste management has become an important issue for many countries due to frequent oil spill accidents and the increase of industrial oily wastewater. The historical oil spill data show that marine oil spills that affect the shoreline can, in extreme cases, produce up to 30 or 40 times more waste than the volume of oil initially released. Hence, responsive authorities aim to develop the most effective oily waste management solution in a timely manner to manage and minimize the waste generated. In this study initially, we tried to develop the roadmap of oily waste management for three-tiered spill scenarios for Atlantic Canada. For that purpose, three oily waste disposal scenarios are evaluated via six criteria which are determined according to the opinions of the experts from the field. Consequently, through sustainable response strategies, the most appropriate and feasible scenario is determined. The results of this study will assist to develop an integrated oily waste management system for identifying the optimal waste-generation-allocation-disposal schemes and generating the optimal management alternatives based on the holistic consideration of environmental, technological, economic, social, and regulatory factors.

Keywords: oily waste management, marine oil spill, multi-criteria decision making, oil spill response

Procedia PDF Downloads 102
3007 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 404
3006 Valorization of Industrial Wastes on Hybrid Low Embodied Carbon Cement Based Mortars

Authors: Z. Abdollahnejad, M. Mastali, F. Pacheco-Torgal

Abstract:

Waste reuse is crucial in a context of circular economy and zero waste sustainable needs. Some wastes deserve further studies by the scientific community not only because they are generated in high amount but also because they have a low reuse rate. This paper reports results of 32 hybrid cement mortars based on fly ash and waste glass. They allow to explore the influence of mix design on the cost and on the embodied carbon of the hybrid cement mortars. The embodied carbon data for all constituents were taken from the database Ecoinvent. This study led to the development of a mixture with just 70 kg CO2e.

Keywords: waste reuse, fly ash, waste glass, hybrid cements, cost, embodied carbon

Procedia PDF Downloads 304
3005 Unraveling the Political Complexities of the Textile and Clothing Waste Ecosystem; A Case Study on Melbourne Metropolitan Civic Waste Management Practices

Authors: Yasaman Samie

Abstract:

The ever-increasing rate of textile and clothing (T&C) waste generation and the common ineffective waste management practices have been for long a challenge for civic waste management. This challenge stems from not only the complexity in the T&C material components but also the heterogeneous nature of the T&C waste management sector and the disconnection between the stakeholders. To date, there is little research that investigates the importance of a governmental structure and its role in T&C waste managerial practices and decision makings. This paper reflects on the impacts and involvement of governments, the Acts, and legislation on the effectiveness of T&C waste management practices, which are carried out by multiple players in a city context. In doing so, this study first develops a methodical framework for holistically analyzing a city’s T&C waste ecosystem. Central to this framework are six dimensions: social, environmental, economic, political, cultural, and educational, as well as the connection between these dimensions such as Socio-Political and Cultural-Political. Second, it delves into the political dimension and its interconnections with varying aspects of T&C waste. In this manner, this case-study takes metropolitan Melbourne as a case and draws on social theories of Actor-Network Theory and the principals of supply chain design and planning. Data collection was through two rounds of semi-structured interviews with 18 key players of T&C waste ecosystem (including charities, city councils, private sector providers and producers) mainly within metropolitan Melbourne and also other Australian and European cities. Research findings expand on the role of the politics of waste in facilitating a proactive approach to T&C waste management in the cities. That is achieved through a revised definition for T&C waste and its characteristics, discussing the varying perceptions of value in waste, prioritizing waste types in civic waste management practices and how all these aspects shall be reflected in the in-placed acts and legislations.

Keywords: civic waste management, multi-stakeholder ecosystem, textile and clothing waste, waste and governments

Procedia PDF Downloads 87
3004 Effect of Acid Activation of Vermiculite on Its Carbon Dioxide Adsorption Behaviors

Authors: Katarzyna Wal, Wojciech Stawiński, Piotr Rutkowski

Abstract:

The scientific community is paying more and more attention to the problem of air pollution. Carbon dioxide is classified as one of the most harmful gases. Its emissions are generated during fossil fuel burning, waste management, and combustion and are responsible for global warming. Clay minerals constitute a group of promising materials for the role of adsorbents. They are composed of two types of phyllosilicate sheets: tetrahedral and octahedral, which form 1:1 or 2:1 structures. Vermiculite is one of their best-known representative, which can be used as an adsorbent from water and gaseous phase. The aim of the presented work was carbon dioxide adsorption on vermiculite. Acid-activated samples (W_NO3_x) were prepared by acid treatment with different concentrations of nitric acid (1, 2, 3, 4 mol L⁻¹). Vermiculite was subjected to modification in order to increase its porosity and adsorption properties. The prepared adsorbents were characterized using the BET-specific surface area analysis, thermogravimetry (TG), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Applied modifications significantly increase the specific surface area from 78,21 m² g⁻¹ for the unmodified sample (W_REF) to 536 m² g-1 for W_NO3_4. Obtained results showed that acid treatment tunes the material’s functional properties by increasing the contact surface and generating more active sites in its structure. The adsorption performance in terms carbon dioxide adsorption capacities follows the order of W_REF (25.91 mg g⁻¹) < W_NO3_1 (38.54 mg g⁻¹) < W_NO3_2 (44.03 mg g⁻¹) W_NO3_4 (67.51 mg g⁻¹) < W_NO3_3 (70.48 mg g⁻¹). Acid activation significantly improved the carbon dioxide adsorption properties of modified samples compared to raw material. These results demonstrate that vermiculite-based samples have the potential to be used as effective CO₂ adsorbents. Furthermore, acid treatment is a promising technique for improving the adsorption properties of clay minerals.

Keywords: adsorption, adsorbent, clay minerals, air pollution, environment

Procedia PDF Downloads 129
3003 Punching Shear Behavior of RC Column Footing on Stabilized Ground

Authors: Sukanta K. Shill, Md. M. Hoque, Md. Shaifullah

Abstract:

An experiment on the punching of RC column footing, comparison of test result to established different codes for punching shear calculation of column footings is presented in the paper. The principal aim of this study is to investigate the punching shear behavior of an isolated column footing using brick aggregate as coarse aggregate. Consequence, a RC model footing was constructed on a stabilized soil and tested the footing under field condition. The test result yields that the experimental punching shear capacity is greater than all the theoretical punching shear capacities obtained by using different codes of practices. It can be stated that BNBC 1993, as well as ACI 318, 2002 code formulae are very conservative in predicting the punching shear resistance of RC footing, whereas the CEB-FIP MC, 1990 formula and Eurocode2 formula are less conservative in predicting the punching shear resistance of footing.

Keywords: footing, punching shear, field condition, stabilized soil, brick aggregate

Procedia PDF Downloads 381
3002 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology

Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua

Abstract:

The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.

Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines

Procedia PDF Downloads 52
3001 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

Authors: Konstantinos Sotiriadis, Olesia Mikhailova

Abstract:

In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste, (b) fly ash geopolymer mortar with 5% PES waste, (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.

Keywords: fly ash, geopolymers, polyester waste, composites

Procedia PDF Downloads 396
3000 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes

Authors: Muammer Kaya

Abstract:

The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.

Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy

Procedia PDF Downloads 323
2999 The Evaluation of Current Pile Driving Prediction Methods for Driven Monopile Foundations in London Clay

Authors: John Davidson, Matteo Castelletti, Ismael Torres, Victor Terente, Jamie Irvine, Sylvie Raymackers

Abstract:

The current industry approach to pile driving predictions consists of developing a model of the hammer-pile-soil system which simulates the relationship between soil resistance to driving (SRD) and blow counts (or pile penetration per blow). The SRD methods traditionally used are broadly based on static pile capacity calculations. The SRD is used in combination with the one-dimensional wave equation model to indicate the anticipated blowcounts with depth for specific hammer energy settings. This approach has predominantly been calibrated on relatively long slender piles used in the oil and gas industry but is now being extended to allow calculations to be undertaken for relatively short rigid large diameter monopile foundations. This paper evaluates the accuracy of current industry practice when applied to a site where large diameter monopiles were installed in predominantly stiff fissured clay. Actual geotechnical and pile installation data, including pile driving records and signal matching analysis (based upon pile driving monitoring techniques), were used for the assessment on the case study site.

Keywords: driven piles, fissured clay, London clay, monopiles, offshore foundations

Procedia PDF Downloads 196
2998 The Preparation and Characterization of Conductive Poly(O-Toluidine)/Smectite Clay Nanocomposite

Authors: E. Erdem, M. Şahin, M. Saçak

Abstract:

Smectite is a layered silicate and modified with alkyl ammonium salts to make both the hydrophilic silicate surfaces organophilic, and to expand the clay layers. Thus, a nanocomposite structure can be formed enabling to enter various types of polymers between the layers. In this study, Na-smectite crystals were prepared by purification of bentonite. Benzyltributylammonium bromide (BTBAB) was used as a swelling agent. The mixing time and additive concentration were changed during the swelling process. It was determined that the 4 h of mixing time and 0.2 g of BTBAB were sufficient and the usage of higher amounts of salt did not increase the interlayer space between the clay layers. Then, the conductive poly(o-toluidine) (POT)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POT content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-toluidine/APS mol ratio. The POT content and conductivity of nanocomposite increased with increasing monomer/oxidant mol ratio up to 1 and did not change at higher ratios. The maximum polymer yield and the highest conductivity value of the composite were 26.0% and 4.0×10-5 S/cm, respectively. The structural and morphological analyses of the POT/smectite nanocomposite were carried out by XRD, FTIR and SEM techniques, respectively.

Keywords: clay, composite, conducting polymer, poly(o-anisidine)

Procedia PDF Downloads 256
2997 Micro-Filtration with an Inorganic Membrane

Authors: Benyamina, Ouldabess, Bensalah

Abstract:

The aim of this study is to use membrane technique for filtration of a coloring solution. the preparation of the micro-filtration membranes is based on a natural clay powder with a low cost, deposited on macro-porous ceramic supports. The micro-filtration membrane provided a very large permeation flow. Indeed, the filtration effectiveness of membrane was proved by the total discoloration of bromothymol blue solution with initial concentration of 10-3 mg/L after the first minutes.

Keywords: the inorganic membrane, micro-filtration, coloring solution, natural clay powder

Procedia PDF Downloads 481
2996 Measuring Resource Recovery and Environmental Benefits of Global Waste Management System Using the Zero Waste Index

Authors: Atiq Uz Zaman

Abstract:

Sustainable waste management is one of the major global challenges that we face today. A poor waste management system not only symbolises the inefficiency of our society but also depletes valuable resources and emits pollutions to the environment. Presently, we extract more natural resources than ever before in order to meet the demand for constantly growing resource consumption. It is estimated that around 71 tonnes of ‘upstream’ materials are used for every tonne of MSW. Therefore, resource recovery from waste potentially offsets a significant amount of upstream resource being depleted. This study tries to measure the environmental benefits of global waste management systems by applying a tool called the Zero Waste Index (ZWI). The ZWI measures the waste management performance by accounting for the potential amount of virgin material that can be offset by recovering resources from waste. In addition, the ZWI tool also considers the energy, GHG and water savings by offsetting virgin materials and recovering energy from waste. This study analyses the municipal solid waste management system of 172 countries from all over the globe and the population covers in the study is 3.37 billion. This study indicates that we generated around 1.47 billion tonnes (436kg/cap/year) of municipal solid waste each year and the waste generation is increasing over time. This study also finds a strong and positive correlation (R2=0.29, p = < .001) between income (GDP/capita/year) and amount of waste generated (kg/capita/year). About 84% of the waste is collected globally and only 15% of the collected waste is recycled. The ZWI of the world is measured in this study of 0.12, which means that the current waste management system potentially offsets only 12% of the total virgin material substitution potential from waste. Annually, an average person saved around 219kWh of energy, emitted around 48kg of GHG and saved around 38l of water. Findings of this study are very important to measure the current waste management performance in a global context. In addition, the study also analysed countries waste management performance based on their income level.

Keywords: global performance, material substitution; municipal waste, resource recovery, waste management, zero waste index

Procedia PDF Downloads 222
2995 The European Legislation on End-of-Waste

Authors: Claudio D'Alonzo

Abstract:

According to recent tendencies, progress on resource efficiency is possible and it will lead to economic, environmental, and social benefits. The passage to a circular economy system, in which all the materials and energy will maintain their value for as long as possible, waste is reduced and only a few resources are used, is one of the most relevant parts of the European Union's environmental policy to develop a sustainable, competitive and low-carbon economy. A definition of circular economy can be found in Decision 1386/2013/EU of the European Parliament and of the Council on a General Union Environment Action Programme to 2020 named “Living well, within the limits of our planet”. The purpose of renewing waste management systems in the UE and making the European model one of the most effective in the world, a revised waste legislative framework entered into force in July 2018. Regarding the Italian legislation, the laws to be modified are the Legislative Decree 3 April 2006, n. 152 and the laws ruling waste management, end-of-waste, by-products and, the regulatory principles regarding circular economy. European rules on end-of-waste are not fully harmonised and so there are legal challenges. The target to be achieved is full consistency between the laws implementing waste and chemicals policies. Only in this way, materials will be safe, fit-for-purpose and designed for durability; additionally, they will have a low environmental impact.

Keywords: circular economy, end-of-waste, legislation, secondary raw materials

Procedia PDF Downloads 49
2994 Mechanism of Religion on Community Movement for Solid Waste Management

Authors: Sophaphan Intahphuak, Narong Pamala, Boonyaporn Yodkhong, Samuhavitayaa

Abstract:

The amount of solid waste increases each year as a result of population growth, urbanization and economic expansion; however, there was little public cooperation in the segregation of solid waste due to the lack of awareness. This study aims to encourage all sectors in the community to participate in the development of a suitable model to reduce environmental waste by emerging the cultural context that bares a close relationship with Buddhism through faith and merit-making. The monks, involving stakeholder in the entire waste management system, help publicize the campaign on Buddhist holy days, religious ceremonies and they also teach people to be responsible for the garbage problem in the community. As for the garbage brought for merit-making, they are sold and the money is used to help build the pavilion. It was found that people can separate recycled garbage and the amount of solid waste slightly decrease. The results obtained suggest that the religion is not only the moral center of the community, it is also the center of community empowerment to consciousness in waste management.

Keywords: community empowerment, religion’s role, waste management, recycled garbage

Procedia PDF Downloads 442