Search results for: morphology optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4591

Search results for: morphology optimization

1981 Biogas Separation, Alcohol Amine Solutions

Authors: Jingxiao Liang, David Rooneyman

Abstract:

Biogas, which is a valuable renewable energy source, can be produced by anaerobic fermentation of agricultural waste, manure, municipal waste, plant material, sewage, green waste, or food waste. It is composed of methane (CH4) and carbon dioxide (CO2) but also contains significant quantities of undesirable compounds such as hydrogen sulfide (H2S), ammonia (NH3), and siloxanes. Since typical raw biogas contains 25–45% CO2, The requirements for biogas quality depend on its further application. Before biogas is being used more efficiently, CO2 should be removed. One of the existing options for biogas separation technologies is based on chemical absorbents, in particular, mono-, di- and tri-alcohol amine solutions. Such amine solutions have been applied as highly efficient CO2 capturing agents. The benchmark in this experiment is N-methyldiethanolamine (MDEA) with piperazine (PZ) as an activator, from CO2 absorption Isotherm curve, optimization conditions are collected, such as activator percentage, temperature etc. This experiment makes new alcohol amines, which could have the same CO2 absorbing ability as activated MDEA, using glycidol as one of reactant, the result is quite satisfying.

Keywords: biogas, CO2, MDEA, separation

Procedia PDF Downloads 623
1980 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support

Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi

Abstract:

The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.

Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools

Procedia PDF Downloads 115
1979 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses

Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.

Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment

Procedia PDF Downloads 372
1978 From Synthesis to Application of Photovoltaic Perovskite Nanowires

Authors: László Forró

Abstract:

The organolead halide perovskite CH3NH3PbI3 and its derivatives are known to be very efficient light harvesters revolutionizing the field of solid-state solar cells. The major research area in this field is photovoltaic device engineering although other applications are being explored, as well. Recently, we have shown that nanowires of this photovoltaic perovskite can be synthesized which in association with carbon nanostructures (carbon nanotubes and graphene) make outstanding composites with rapid and strong photo-response. They can serve as conducting electrodes, or as central components of detectors. The performance of several miniature devices based on these composite structures will be demonstrated. Our latest findings on the guided growth of perovskite nanowires by solvatomorph graphoepitaxy will be presented. This method turned out to be a fairly simple approach to overcome the spatially random surface nucleation. The process allows the synthesis of extremely long (centimeters) and thin (a few nanometers) nanowires with a morphology defined by the shape of nanostructured open fluidic channels. This low-temperature solution-growth method could open up an entirely new spectrum of architectural designs of organometallic-halide-perovskite-based heterojunctions and tandem solar cells, LEDs and other optoelectronic devices. Acknowledgment: This work is done in collaboration with Endre Horvath, Massimo Spina, Alla Arakcheeva, Balint Nafradi, Eric Bonvin1, Andrzej Sienkievicz, Zsolt Szekrenyes, Hajnalka Tohati, Katalin Kamaras, Eduard Tutis, Laszlo Mihaly and Karoly Holczer The research is supported by the ERC Advanced Grant (PICOPROP670918).

Keywords: photovoltaics, perovskite, nanowire, photodetector

Procedia PDF Downloads 351
1977 Development of Hierarchically Structured Tablets with 3D Printed Inclusions for Controlled Drug Release

Authors: Veronika Lesáková, Silvia Slezáková, František Štěpánek

Abstract:

Drug dosage forms consisting of multi-unit particle systems (MUPS) for modified drug release provide a promising route for overcoming the limitation of conventional tablets. Despite the conventional use of pellets as units for MUP systems, 3D printed polymers loaded with a drug seem like an interesting candidate due to the control over dosing that 3D printing mechanisms offer. Further, 3D printing offers high flexibility and control over the spatial structuring of a printed object. The final MUPS tablets include PVP and HPC as granulate with other excipients, enabling the compaction process of this mixture with 3D printed inclusions, also termed minitablets. In this study, we have developed the multi-step production process for MUPS tablets, including the 3D printing technology. The MUPS tablets with incorporated 3D printed minitablets are a complex system for drug delivery, providing modified drug release. Such structured tablets promise to reduce drug fluctuations in blood, risk of local toxicity, and increase bioavailability, resulting in an improved therapeutic effect due to the fast transfer into the small intestine, where particles are evenly distributed. Drug loaded 3D printed minitablets were compacted into the excipient mixture, influencing drug release through varying parameters, such as minitablets size, matrix composition, and compaction parameters. Further, the mechanical properties and morphology of the final MUPS tablets were analyzed as many properties, such as plasticity and elasticity, can significantly influence the dissolution profile of the drug.

Keywords: 3D printing, dissolution kinetics, drug delivery, hot-melt extrusion

Procedia PDF Downloads 88
1976 Morphological Anatomical Study of the Axis Vertebra and Its Clinical Orientation

Authors: Mangala M. Pai, B. V. Murlimanju, Latha V. Prabhu, P. J. Jiji , Vandana Blossom

Abstract:

Background:To study the morphological parameters of the axis vertebra in anatomical specimens. Methods: The present study was designed to obtain the morphometric data of axis vertebra. The superior and inferior articular facets of the axis were macroscopically observed for their shapes and the different parameters were measured using the digital Vernier caliper. It included 20 dried axis bones, which were obtained from the anatomy laboratory. Results: The morphometric data obtained in the present study are represented in the tables. The side wise comparison of the length and width of the articular facets of the axis vertebra were done. The present study observed that, there is no statistically significant difference observed among the parameters of right and left side articular facets (p>0.05). The superior and inferior articular facets were observed to have variable shapes. The frequencies of different shapes of superior and inferior articular facets are represented in figures. All the shapes of the inferior and superior articular facets were symmetrical over the right and left sides. Among the superior articular facets, the constrictions were absent in 13 cases (65%), 2 (10%) exhibited a single constriction, 3 (15%) had 2 constrictions and 2 (10%) were having 3 constrictions. The constrictions were absent in 11 (55%) of the inferior articular facets, 3 (15%) of them had 1 constriction, 3 (15%) were having 2 constrictions, 2 (10%) exhibited 3 constrictions and 1 (5%) of them had 4 constrictions. The constrictions of the inferior and superior articular facets were symmetrical over the right and left sides. Conclusion: We believe that the present study has provided additional information on the morphometric data of the axis vertebra. The data are important to the neurosurgeons, orthopedic surgeons and radiologists. The preoperative assessment of the axis vertebra may prevent dangerous complications like spinal cord and nerve root compression during the surgical intervention.

Keywords: axis, articular facet, morphology, morphometry

Procedia PDF Downloads 324
1975 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 597
1974 Scheduling Tasks in Embedded Systems Based on NoC Architecture

Authors: D. Dorota

Abstract:

This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.

Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing

Procedia PDF Downloads 367
1973 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 212
1972 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 120
1971 Impacts and Management of Oil Spill Pollution along the Chabahar Bay by ESI Mapping, Iran

Authors: M. Sanjarani, A. Danehkar, A. Mashincheyan, A. H. Javid, S. M. R. Fatemi

Abstract:

The oil spill in marine water has direct impact on coastal resources and community. Environmental Sensitivity Index (ESI) map is the first step to assess the potential impact of an oil spill and minimize the damage of coastal resources. In order to create Environmental Sensitivity Maps for the Chabahar bay (Iran), information has been collected in three different layers (Shoreline Classification, Biological and Human- uses resources) by means of field observations and measurements of beach morphology, personal interviews with professionals of different areas and the collection of bibliographic information. In this paper an attempt made to prepare an ESI map for sensitivity to oil spills of Chabahar bay coast. The Chabahar bay is subjected to high threaten to oil spill because of port, dense mangrove forest,only coral spot in Oman Sea and many industrial activities. Mapping the coastal resources, shoreline and coastal structures was carried out using Satellite images and GIS technology. The coastal features classified into three major categories as: Shoreline Classification, Biological and Human uses resources. The important resources classified into mangrove, Exposed tidal flats, sandy beach, etc. The sensitivity of shore was ranked as low to high (1 = low sensitivity,10 = high sensitivity) based on geomorphology of Chabahar bay coast using NOAA standards (sensitivity to oil, ease of clean up, etc). Eight ESI types were found in the area namely; ESI 1A, 1C, 3A, 6B, 7, 8B,9A and 10D. Therefore, in the study area, 50% were defined as High sensitivity, less than 1% as Medium, and 49% as low sensitivity areas. The ESI maps are useful to the oil spill responders, coastal managers and contingency planners. The overall ESI mapping product can provide a valuable management tool not only for oil spill response but for better integrated coastal zone management.

Keywords: ESI, oil spill, GIS, Chabahar Bay, Iran

Procedia PDF Downloads 355
1970 Dynamics Behavior of DFIG Wind Energy Conversion System Incase Dip Voltage

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today’s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.

Keywords: doubly fed induction generator (DFIG), wind energy, grid fault, electrical engineering

Procedia PDF Downloads 466
1969 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves

Authors: Yingchen Yang

Abstract:

Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.

Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction

Procedia PDF Downloads 167
1968 High Strength Steel Thin-Walled Cold-Formed Profiles Manufactured for Automated Rack Supported Warehouses

Authors: A. Natali, F. V. Lippi, F. Morelli, W. Salvatore, J. H. M. De Paula Filho, P. Pol

Abstract:

Automated Rack Supported Warehouses (ARSWs) are storage buildings whose load-bearing structure is made of the same steel racks where goods are stocked. These racks are made of cold formed elements, and the main supporting structure is repeated several times along the length of the building, resulting in a huge quantity of steel. The possibility of using high strength steel to manufacture the traditional cold-formed profiles used for ARSWs is numerically investigated, with the aim of reducing the necessary steel quantity but guaranteeing optimal structural performance levels.

Keywords: steel racks, automated rack supported warehouse, thin-walled cold-formed elements, high strength steel, structural optimization

Procedia PDF Downloads 149
1967 Study of the Morpho-Sedimentary Evolution of Tidal Mouths on the Southern Fringe of the Gulf of Gabes, Southeast of Tunisia: Hydrodynamic Circulation and Associated Sedimentary Movements

Authors: Chadlia Ounissi, Maher Gzam, Tahani Hallek, Salah Mahmoudi, Mabrouk Montacer

Abstract:

This work consists of a morphological study of the coastal domain at the central fringe of the Gulf of Gabes, Southeast of Tunisia, belonging to the structural domain of the maritime Jeffara. The diachronic study of tidal mouths in the study area and the observation of morphological markers revealed the existence of hydro-sedimentary processes leading to sedimentary accumulation and filling of the estuarine system. This filling process is materialized by the genesis of a sandy cord and the lateral migration of the tidal mouth. Moreover, we have been able to affirm, by the use of satellite images, that the dominant and responsible current at this particular coastal morphology is directed to the North, having constituted a controversy on the occurrence of what is previously mentioned in the literature. The speed of the lateral displacement of the channel varies as a function of the hydrodynamic forcing. Wave-dominated sites recorded the fastest speed (18 m/year) in the image of the mouth of Wadi el Melah. Tidal dominated sites in the Wadi Zerkine satellite image recorded a very low lateral migration (2 m / year). This variation in speed indicates that the intensity of the coastal current is uneven along the coast. This general pattern of hydrodynamic circulation, to the north, of the central fringe of the Gulf of Gabes, is disturbed by hydro-sedimentary cells.

Keywords: tidal mouth, direction of current, filling, sediment transport, Gulf of Gabes

Procedia PDF Downloads 277
1966 Impact of Population Size on Symmetric Travelling Salesman Problem Efficiency

Authors: Wafa' Alsharafat, Suhila Farhan Abu-Owida

Abstract:

Genetic algorithm (GA) is a powerful evolutionary searching technique that is used successfully to solve and optimize problems in different research areas. Genetic Algorithm (GA) considered as one of optimization methods used to solve Travel salesman Problem (TSP). The feasibility of GA in finding a TSP solution is dependent on GA operators; encoding method, population size, termination criteria, in general. In specific, crossover and its probability play a significant role in finding possible solutions for Symmetric TSP (STSP). In addition, the crossover should be determined and enhanced in term reaching optimal or at least near optimal. In this paper, we spot the light on using a modified crossover method called modified sequential constructive crossover and its impact on reaching optimal solution. To justify the relevance of a parameter value in solving the TSP, a set comparative analysis conducted on different crossover methods values.

Keywords: genetic algorithm, crossover, mutation, TSP

Procedia PDF Downloads 217
1965 Improved Artificial Bee Colony Algorithm for Non-Convex Economic Power Dispatch Problem

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

This study presents a modified version of the artificial bee colony (ABC) algorithm by including a local search technique for solving the non-convex economic power dispatch problem. The local search step is incorporated at the end of each iteration. Total system losses, valve-point loading effects and prohibited operating zones have been incorporated in the problem formulation. Thus, the problem becomes highly nonlinear and with discontinuous objective function. The proposed technique is validated using an IEEE benchmark system with ten thermal units. Simulation results demonstrate that the proposed optimization algorithm has better convergence characteristics in comparison with the original ABC algorithm.

Keywords: economic power dispatch, artificial bee colony, valve-point loading effects, prohibited operating zones

Procedia PDF Downloads 250
1964 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, dynamics, Lagrange, parallel platform

Procedia PDF Downloads 340
1963 Formulation and Evaluation of Dispersible Tablet of Furosemide for Pediatric Use

Authors: O. Benaziz, A. Dorbane, S. Djeraba

Abstract:

The objective of this work is to formulate a dry dispersible form of furosemide in the context of pediatric dose adjustment. To achieve this, we have produced a set of formulas that will be tested in process and after compression. The formula with the best results will be improved to optimize the final shape of the product. Furosemide is the most widely used pediatric diuretic because of its low toxicity. The manufacturing process was chosen taking into account all the data relating to the active ingredient and the excipients used and complying with the specifications and requirements of dispersible tablets. The process used to prepare these tablets was wet granulation. Different excipients were used: lactose, maize starch, magnesium stearate and two superdisintegrants. The mode of incorporation of super-disintegrant changes with each formula. The use of super-disintegrant in the formula allowed optimization of the disintegration time. Prepared tablets were evaluated for weight, content uniformity, hardness, disintegration time, friability and in vitro dissolution test. 

Keywords: formulation, dispersible tablets, wet granulation, superdisintegrants, disintegration

Procedia PDF Downloads 338
1962 Biocellulose Template for 3D Mineral Scaffolds

Authors: C. Busuioc, G. Voicu, S. I. Jinga

Abstract:

The field of tissue engineering brings new challenges in terms of proposing original solutions for ongoing medical issues, improving the biological performances of existing clinical systems and speeding the healing process for a faster recovery and a more comfortable life as patient. In this context, we propose the obtaining of 3D porous scaffolds of mineral nature, dedicated to bone repairing and regeneration purposes or employed as bioactive filler for bone cements. Thus, bacterial cellulose - calcium phosphates composite materials have been synthesized by successive immersing of the polymeric membranes in the precursor solution containing Ca2+ and [PO4]3- ions. The mineral phase deposited on the surface of biocellulose fibers was varied as amount through the number of immersing cycles. The intermediary composites were subjected to thermal treatments at different temperatures in order to remove the organic part and provide the formation of a self-sustained 3D architecture. The resulting phase composition consists of common phosphates, while the morphology largely depends on the preparation parameters. Thus, the aspect of the 3D mineral scaffolds can be tuned from a loose microstructure composed of large grains connected via monocrystalline nanorods to a trabecular pattern crossed by parallel internal channels, just like the natural bone. The bioactivity and biocompatibility of the obtained materials have been also assessed, with encouraging results in the clinical use direction. In conclusion, the compositional, structural, morphological and biological characterizations sustain the suitability of the reported biostructures for integration in hard tissue engineering applications.

Keywords: bacterial cellulose, bone reconstruction, calcium phosphates, mineral scaffolds

Procedia PDF Downloads 189
1961 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity

Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova

Abstract:

Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.

Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms

Procedia PDF Downloads 64
1960 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: few-shot learning, triplet network, adaptive margin, deep learning

Procedia PDF Downloads 163
1959 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 146
1958 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing

Authors: Yu Li, Jingwu He, Yuexi Xiong

Abstract:

The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.

Keywords: active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars

Procedia PDF Downloads 315
1957 Optical Properties of Nanocrystalline Europium-Yttrium Titanate EuYTi2O7

Authors: J. Mrazek, R. Skala, S. Bysakh, Ivan Kasik

Abstract:

Lanthanide-doped yttrium titanium oxides, which crystallize in a pyrochlore structure with general formula (RExY1-x)2Ti2O7 (RE=rare earth element), have been extensively investigated in recent years for their interesting physical and chemical properties. Despite that the pure pyrochlore structure does not present luminescence ability, the presence of yttrium ions in the pyrochlore structure significantly improves the luminescence properties of the RE. Moreover, the luminescence properties of pyrochlores strongly depend on the size of formed nanocrystals. In this contribution, we present a versatile sol-gel synthesis of nanocrystalline EuYTi2O7pyrochlore. The nanocrystalline powders and thin films were prepared by the condensation of titanium(IV)butoxide with europium(III) chloride followed by the calcination. The introduced method leads to the formation of the highly-homogenous nanocrystalline EuYTi2O7 with tailored grain size ranging from 20 nm to 200 nm. The morphology and the structure of the formed nanocrystals are linked to the luminescence properties of Eu3+ ions incorporated into the pyrochlore lattice. The results of XRD and HRTEM analysis show that the Eu3+ and Y3+ ions are regularly distributed inside the lattice. The lifetime of Eu3+ ions in calcinated powders is regularly decreasing from 140 us to 68 us and the refractive index of prepared thin films regularly increases from 2.0 to 2.45 according to the calcination temperature. The shape of the luminescence spectra and the decrease of the lifetime correspond with the crystallinity of prepared powders. The results present fundamental information about the effect of the size of the nanocrystals to their luminescence properties. The promising application of prepared nanocrystals in the field of lasers and planar optical amplifiers is widely discussed in the contribution.

Keywords: europium, luminescence, nanocrystals, sol-gel

Procedia PDF Downloads 253
1956 Use of Two-Dimensional Hydraulics Modeling for Design of Erosion Remedy

Authors: Ayoub. El Bourtali, Abdessamed.Najine, Amrou Moussa. Benmoussa

Abstract:

One of the main goals of river engineering is river training, which is defined as controlling and predicting the behavior of a river. It is taking effective measurements to eliminate all related risks and thus improve the river system. In some rivers, the riverbed continues to erode and degrade; therefore, equilibrium will never be reached. Generally, river geometric characteristics and riverbed erosion analysis are some of the most complex but critical topics in river engineering and sediment hydraulics; riverbank erosion is the second answering process in hydrodynamics, which has a major impact on the ecological chain and socio-economic process. This study aims to integrate the new computer technology that can analyze erosion and hydraulic problems through computer simulation and modeling. Choosing the right model remains a difficult and sensitive job for field engineers. This paper makes use of the 5.0.4 version of the HEC-RAS model. The river section is adopted according to the gauged station and the proximity of the adjustment. In this work, we will demonstrate how 2D hydraulic modeling helped clarify the design and cover visuals to set up depth and velocities at riverbanks and throughout advanced structures. The hydrologic engineering center's-river analysis system (HEC-RAS) 2D model was used to create a hydraulic study of the erosion model. The geometric data were generated from the 12.5-meter x 12.5-meter resolution digital elevation model. In addition to showing eroded or overturned river sections, the model output also shows patterns of riverbank changes, which can help us reduce problems caused by erosion.

Keywords: 2D hydraulics model, erosion, floodplain, hydrodynamic, HEC-RAS, riverbed erosion, river morphology, resolution digital data, sediment

Procedia PDF Downloads 184
1955 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 507
1954 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process

Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri

Abstract:

Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.

Keywords: automotive, performance, reliability, RAM, fluid filling process

Procedia PDF Downloads 347
1953 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 325
1952 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication

Authors: Rui Mao, Heming Ji, Xiaoyu Wang

Abstract:

Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.

Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM

Procedia PDF Downloads 148