Search results for: articular facet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 102

Search results for: articular facet

102 Morphological Anatomical Study of the Axis Vertebra and Its Clinical Orientation

Authors: Mangala M. Pai, B. V. Murlimanju, Latha V. Prabhu, P. J. Jiji , Vandana Blossom

Abstract:

Background:To study the morphological parameters of the axis vertebra in anatomical specimens. Methods: The present study was designed to obtain the morphometric data of axis vertebra. The superior and inferior articular facets of the axis were macroscopically observed for their shapes and the different parameters were measured using the digital Vernier caliper. It included 20 dried axis bones, which were obtained from the anatomy laboratory. Results: The morphometric data obtained in the present study are represented in the tables. The side wise comparison of the length and width of the articular facets of the axis vertebra were done. The present study observed that, there is no statistically significant difference observed among the parameters of right and left side articular facets (p>0.05). The superior and inferior articular facets were observed to have variable shapes. The frequencies of different shapes of superior and inferior articular facets are represented in figures. All the shapes of the inferior and superior articular facets were symmetrical over the right and left sides. Among the superior articular facets, the constrictions were absent in 13 cases (65%), 2 (10%) exhibited a single constriction, 3 (15%) had 2 constrictions and 2 (10%) were having 3 constrictions. The constrictions were absent in 11 (55%) of the inferior articular facets, 3 (15%) of them had 1 constriction, 3 (15%) were having 2 constrictions, 2 (10%) exhibited 3 constrictions and 1 (5%) of them had 4 constrictions. The constrictions of the inferior and superior articular facets were symmetrical over the right and left sides. Conclusion: We believe that the present study has provided additional information on the morphometric data of the axis vertebra. The data are important to the neurosurgeons, orthopedic surgeons and radiologists. The preoperative assessment of the axis vertebra may prevent dangerous complications like spinal cord and nerve root compression during the surgical intervention.

Keywords: axis, articular facet, morphology, morphometry

Procedia PDF Downloads 298
101 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: hybrid, modeling, fast simulation, lumbar spine

Procedia PDF Downloads 279
100 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 169
99 The Effects of Social Capital and Empowering Leadership on Team Cohesion

Authors: Y. R. Lai, J. C. Jehng, T. T. Chang

Abstract:

Team is a popular job design in the management settings. Because people on a team need to work together to complete a lot of tasks, the interaction between team members strongly influences team effectiveness. The study examines the effect of social capital and empowering leadership on team cohesion. There are three facets of social capital: structural facet, relational facet, and cognitive facet. Empowering leadership includes enhancing the meaningfulness of work, fostering participation in decision making, expressing confidence in high performance, and providing autonomy from bureaucratic constraints. Data were collected from 181 team members of 47 teams in the real estate agency industry. The results show that the relational social capital, enhancing the meaningfulness of work, and providing autonomy from bureaucratic constraints are positively related to two dimensions of team cohesion: sense of belonging and feelings of moral. Additionally, expressing confidence in high performance is negatively related to sense of belonging.

Keywords: social capital, empowering leadership, team cohesion, team effectiveness

Procedia PDF Downloads 381
98 Visco-Hyperelastic Finite Element Analysis for Diagnosis of Knee Joint Injury Caused by Meniscal Tearing

Authors: Eiji Nakamachi, Tsuyoshi Eguchi, Sayo Yamamoto, Yusuke Morita, H. Sakamoto

Abstract:

In this study, we aim to reveal the relationship between the meniscal tearing and the articular cartilage injury of knee joint by using the dynamic explicit finite element (FE) method. Meniscal injuries reduce its functional ability and consequently increase the load on the articular cartilage of knee joint. In order to prevent the induction of osteoarthritis (OA) caused by meniscal injuries, many medical treatment techniques, such as artificial meniscus replacement and meniscal regeneration, have been developed. However, it is reported that these treatments are not the comprehensive methods. In order to reveal the fundamental mechanism of OA induction, the mechanical characterization of meniscus under the condition of normal and injured states is carried out by using FE analyses. At first, a FE model of the human knee joint in the case of normal state – ‘intact’ - was constructed by using the magnetron resonance (MR) tomography images and the image construction code, Materialize Mimics. Next, two types of meniscal injury models with the radial tears of medial and lateral menisci were constructed. In FE analyses, the linear elastic constitutive law was adopted for the femur and tibia bones, the visco-hyperelastic constitutive law for the articular cartilage, and the visco-anisotropic hyperelastic constitutive law for the meniscus, respectively. Material properties of articular cartilage and meniscus were identified using the stress-strain curves obtained by our compressive and the tensile tests. The numerical results under the normal walking condition revealed how and where the maximum compressive stress occurred on the articular cartilage. The maximum compressive stress and its occurrence point were varied in the intact and two meniscal tear models. These compressive stress values can be used to establish the threshold value to cause the pathological change for the diagnosis. In this study, FE analyses of knee joint were carried out to reveal the influence of meniscal injuries on the cartilage injury. The following conclusions are obtained. 1. 3D FE model, which consists femur, tibia, articular cartilage and meniscus was constructed based on MR images of human knee joint. The image processing code, Materialize Mimics was used by using the tetrahedral FE elements. 2. Visco-anisotropic hyperelastic constitutive equation was formulated by adopting the generalized Kelvin model. The material properties of meniscus and articular cartilage were determined by curve fitting with experimental results. 3. Stresses on the articular cartilage and menisci were obtained in cases of the intact and two radial tears of medial and lateral menisci. Through comparison with the case of intact knee joint, two tear models show almost same stress value and higher value than the intact one. It was shown that both meniscal tears induce the stress localization in both medial and lateral regions. It is confirmed that our newly developed FE analysis code has a potential to be a new diagnostic system to evaluate the meniscal damage on the articular cartilage through the mechanical functional assessment.

Keywords: finite element analysis, hyperelastic constitutive law, knee joint injury, meniscal tear, stress concentration

Procedia PDF Downloads 205
97 Synergistic Effect of Chondroinductive Growth Factors and Synovium-Derived Mesenchymal Stem Cells on Regeneration of Cartilage Defects in Rabbits

Authors: M. Karzhauov, А. Mukhambetova, M. Sarsenova, E. Raimagambetov, V. Ogay

Abstract:

Regeneration of injured articular cartilage remains one of the most difficult and unsolved problems in traumatology and orthopedics. Currently, for the treatment of cartilage defects surgical techniques for stimulation of the regeneration of cartilage in damaged joints such as multiple microperforation, mosaic chondroplasty, abrasion and microfractures is used. However, as shown by clinical practice, they can not provide a full and sustainable recovery of articular hyaline cartilage. In this regard, the current high hopes in the regeneration of cartilage defects reasonably are associated with the use of tissue engineering approaches to restore the structural and functional characteristics of damaged joints using stem cells, growth factors and biopolymers or scaffolds. The purpose of the present study was to investigate the effects of chondroinductive growth factors and synovium-derived mesenchymal stem cells (SD-MSCs) on the regeneration of cartilage defects in rabbits. SD-MSCs were isolated from the synovium membrane of Flemish giant rabbits, and expanded in complete culture medium α-MEM. Rabbit SD-MSCs were characterized by CFU-assay and by their ability to differentiate into osteoblasts, chondrocytes and adipocytes. The effects of growth factors (TGF-β1, BMP-2, BMP-4 and IGF-I) on MSC chondrogenesis were examined in micromass pellet cultures using histological and biochemical analysis. Articular cartilage defect (4mm in diameter) in the intercondylar groove of the patellofemoral joint was performed with a kit for the mosaic chondroplasty. The defect was made until subchondral bone plate. Delivery of SD-MSCs and growth factors was conducted in combination with hyaloronic acid (HA). SD-MSCs, growth factors and control groups were compared macroscopically and histologically at 10, 30, 60 and 90 days aftrer intra-articular injection. Our in vitro comparative study revealed that TGF-β1 and BMP-4 are key chondroinductive factors for both the growth and chondrogenesis of SD-MSCs. The highest effect on MSC chondrogenesis was observed with the synergistic interaction of TGF-β1 and BMP-4. In addition, biochemical analysis of the chondrogenic micromass pellets also revealed that the levels of glycosaminoglycans and DNA after combined treatment with TGF-β1 and BMP-4 was significantly higher in comparison to individual application of these factors. In vivo study showed that for complete regeneration of cartilage defects with intra-articular injection of SD-MSCs with HA takes time 90 days. However, single injection of SD-MSCs in combiantion with TGF-β1, BMP-4 and HA significantly promoted regeneration rate of the cartilage defects in rabbits. In this case, complete regeneration of cartilage defects was observed in 30 days after intra-articular injection. Thus, our in vitro and in vivo study demonstrated that combined application of rabbit SD-MSC with chondroinductive growth factors and HA results in strong synergistic effect on the chondrogenesis significantly enhancing regeneration of the damaged cartilage.

Keywords: Mesenchymal stem cells, synovium, chondroinductive factors, TGF-β1, BMP-2, BMP-4, IGF-I

Procedia PDF Downloads 271
96 Morphology of the Acetabular Cartilage Surface in Elderly Cadavers Analyzing the Contact between the Acetabulum and Femoral Head

Authors: Keisuke Akiyama, Takashi Sakai, Junichiro Koyanagi, Hideki Yoshikawa, Kazuomi Sugamoto

Abstract:

The geometry of acetabular cartilage surface plays an important role in hip joint biomechanics. The aim of this study was to analyze the morphology of acetabular articular cartilage surface in elderly subjects using a 3D-digitizer. Twenty hemipelves from 12 subjects (mean ages 85 years) were scanned with 3D-digitizer. Each acetabular surface model was divided into four regions: anterosuperior (AS), anteroinferior (AI), posterosuperior (PS), and posteroinferior (PI). In the global acetabulum and each region, the acetabular sphere radius and the standard deviation (SD) of the distance from the acetabular sphere center to the acetabular cartilage surface were calculated. In the global acetabulum, the distance between the acetabular surface model and the maximum sphere which did not penetrate over the acetabular surface model was calculated as the inferred femoral head, and then the distribution was mapped at intervals of 0.5 mm. The SD in AS was significantly larger than that in AI (p = 0.006) and PI (p = 0.001). The SD in PS was significantly larger than that in PI (p = 0.005). The closest region (0-0.5 mm) tended to be distributed at anterior or posterosuperior acetabular edge. The contact between the femoral head and acetabulum might start at the periphery of the lunate surface, especially in the anterior or posterosuperior region. From viewpoint of acetabular morphology, the acetabular articular cartilage in the anterior or posterosuperior edge could be more vulnerable due to direct contact mechanism.

Keywords: acetabulum, cartilage, morphology, 3D-digitizer

Procedia PDF Downloads 316
95 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 13
94 Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion

Authors: Xiyao Shan, Pavlos Evangelidis, Adam Kositsky, Naoki Ikeda, Yasuo Kawakami

Abstract:

The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent.

Keywords: aponeurosis, plantar flexion and dorsiflexion, shear modulus, shear wave elastography

Procedia PDF Downloads 160
93 Vascular Foramina of the Capitate Bone of the Hand – an Anatomical Study

Authors: Latha V. Prabhu, B.V. Murlimanju, P.J. Jiji, Mangala M. Pai

Abstract:

Background: The capitate is the largest among the carpal bones. There exists no literature about the vascular foramina of the capitate bone. The objective of the present study was to investigate the morphology and number of the nutrient foramina in the cadaveric dried capitate bones of the Indian population. Methods: The present study included 59 capitate bones (25 right sided and 34 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular and articular surfaces. The foramina were observed at the medial, lateral, palmar and dorsal surfaces of the capitate bones. The foramina were ranged from 6 to 23 in each capitate bone. In the medial surface, the foramina ranged from 1 to 6, lateral surface from 0 to 7, the foramina ranged between 0 and 5 in the palmar surface. However most of the foramina were located at the dorsal surface which ranged from 3 to 11. Conclusion: We believe that the present study has provided additional data about the nutrient foramina of the capitate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The knowledge about the foramina is also important to the radiologists to prevent the misinterpretation of the findings in the x ray and computed tomogram scan films. The foramina may mimick like erosions and ossicles. The morphological knowledge of the vasculature, their foramina of entry and number is required to understand the concepts in the avascular necrosis of the capitate.

Keywords: avascular necrosis, capitate, morphology, nutrient foramen

Procedia PDF Downloads 308
92 Posterior Acetabular Fractures-Optimizing the Treatment by Enhancing Practical Skills

Authors: Olivera Lupescu, Taina Elena Avramescu, Mihail Nagea, Alexandru Dimitriu

Abstract:

Acetabular fractures represent a real challenge due to their impact upon the long term function of the hip joint, and due to the risk of intra- and peri-operative complications especially that they affect young, active people. That is why treating these fractures require certain skills which must be exercised, regarding the pre-operative planning, as well as the execution of surgery.The authors retrospectively analyse 38 cases with acetabular fractures operated using the posterior approach in our hospital between 01.01.2013- 01.01.2015 for which complete medical records ensure a follow-up of 24 months, in order to establish the main causes of potential errors and to underline the methods for preventing them. This target is included in the Erasmus + project ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery COR-skills’. This paper analyses the pitfalls revealed by these cases, as well as the measures necessary to enhance the practical skills of the surgeons who perform acetabular surgery. Pre-op planning matched the intra and post-operative outcome in 88% of the analyzed points, from 72% at the beginning to 94% in the last case, meaning that experience is very important in treating this injury. The main problems detected for the posterior approach were: nervous complications - 3 cases, 1 of them a complete paralysis of the sciatic nerve, which recovered 6 months after surgery, and in other 2 cases intra-articular position of the screws was demonstrated by post-operative CT scans, so secondary screw removal was necessary in these cases. We analysed this incident, too, due to lack of information about the relationship between the screws and the joint secondary to this approach. Septic complications appeared in 3 cases, 2 superficial and 1 profound (requiring implant removal). The most important problems were the reduction of the fractures and the positioning of the screws so as not to interfere with the the articular space. In posterior acetabular fractures, pre-op complex planning is important in order to achieve maximum treatment efficacy with minimum of risk; an optimal training of the surgeons insisting on the main points of potential mistakes ensure the success of the procedure, as well as a favorable outcome for the patient.

Keywords: acetabular fractures, articular congruency, surgical skills, vocational training

Procedia PDF Downloads 181
91 Personality Composition in Senior Management Teams: The Importance of Homogeneity in Dynamic Managerial Capabilities

Authors: Shelley Harrington

Abstract:

As a result of increasingly dynamic business environments, the creation and fostering of dynamic capabilities, [those capabilities that enable sustained competitive success despite of dynamism through the awareness and reconfiguration of internal and external competencies], supported by organisational learning [a dynamic capability] has gained increased and prevalent momentum in the research arena. Presenting findings funded by the Economic Social Research Council, this paper investigates the extent to which Senior Management Team (SMT) personality (at the trait and facet level) is associated with the creation of dynamic managerial capabilities at the team level, and effective organisational learning/knowledge sharing within the firm. In doing so, this research highlights the importance of micro-foundations in organisational psychology and specifically dynamic capabilities, a field which to date has largely ignored the importance of psychology in understanding these important and necessary capabilities. Using a direct measure of personality (NEO PI-3) at the trait and facet level across 32 high technology and finance firms in the UK, their CEOs (N=32) and their complete SMTs [N=212], a new measure of dynamic managerial capabilities at the team level was created and statistically validated for use within the work. A quantitative methodology was employed with regression and gap analysis being used to show the empirical foundations of personality being positioned as a micro-foundation of dynamic capabilities. The results of this study found that personality homogeneity within the SMT was required to strengthen the dynamic managerial capabilities of sensing, seizing and transforming, something which was required to reflect strong organisational learning at middle management level [N=533]. In particular, it was found that the greater the difference [t-score gaps] between the personality profiles of a Chief Executive Officer (CEO) and their complete, collective SMT, the lower the resulting self-reported nature of dynamic managerial capabilities. For example; the larger the difference between a CEOs level of dutifulness, a facet contributing to the definition of conscientiousness, and their SMT’s level of dutifulness, the lower the reported level of transforming, a capability fundamental to strategic change in a dynamic business environment. This in turn directly questions recent trends, particularly in upper echelons research highlighting the need for heterogeneity within teams. In doing so, it successfully positions personality as a micro-foundation of dynamic capabilities, thus contributing to recent discussions from within the strategic management field calling for the need to empirically explore dynamic capabilities at such a level.

Keywords: dynamic managerial capabilities, senior management teams, personality, dynamism

Procedia PDF Downloads 236
90 Randomized, Controlled Blind Study Comparing Sacroiliac Intra-Articular Steroid Injection to Radiofrequency Denervation for Management of Sacroiliac Joint Pain

Authors: Ossama Salman

Abstract:

Background and objective: Sacroiliac joint pain is a common cause for chronic axial low back pain, with up to 20% prevalence rate. To date, no effective long-term treatment intervention has been embarked on yet. The aim of our study was to compare steroid block to radiofrequency ablation for SIJ pain conditions. Methods: A randomized, blind, study was conducted in 30 patients with sacroiliac joint pain. Fifteen patients received radiofrequency denervation of L4-5 primary dorsal rami and S1-3 lateral sacral branch, and 15 patients received steroid under fluoroscopy. Those in the steroid group who did not respond to steroid injections were offered to cross over to get radiofrequency ablation. Results: At 1-, 3- and 6-months post-intervention, 73%, 60% and 53% of patients, respectively, gained ≥ 50 % pain relief in the radiofrequency (RF) ablation group. In the steroid group, at one month post intervention follow up, only 20% gained ≥ 50 % pain relief, but failed to show any improvement at 3 months and 6 months follow up. Conclusions: Radiofrequency ablation at L4 and L5 primary dorsal rami and S1-3 lateral sacral branch may provide effective and longer pain relief compared to the classic intra-articular steroid injection, in properly selected patients with suspected sacroiliac joint pain. Larger studies are called for to confirm our results and lay out the optimal patient selection and treatment parameters for this poorly comprehended disorder.

Keywords: lateral branch denervation, LBD, radio frequency, RF, sacroiliac joint, SIJ, visual analogue scale, VAS

Procedia PDF Downloads 185
89 Re-Differentiation Effect of Sesquiterpene Farnesol on De-Differentiated Rabbit Chondrocytes

Authors: Chun Hsien Wu, Guan Xuan Wu, Hsia Ying Cheng, Shyh Ming Kuo

Abstract:

Articular cartilage is composed of chondrocytes and extracellular matrix, such as collagen fibers, glycosaminoglycans, etc., which play an important role in lubricating and cushion joint activities. The phenotypic expression and metabolic activity of chondrocytes are extremely important in maintaining the functions of articular cartilage. In in vitro passaged culture of chondrocytes, chondrocytes gradually lose their original cell phenotype and morphology, which is called dedifferentiation. After continuous passaged culture of chondrocytes or induction by inflammatory factor IL-1, chondrocytes changed their phenotype and morphology. Also, the extracellular matrix type II collagen and GAG secretion were significantly reduced, while type I and X collagen were synthesized. Farnesol is an anti-inflammatory and antioxidant sesquiterpene compound that has the specific property of promoting collagen production. The purpose of this study was to investigate whether farnesol could restore the original type II collagen synthesis and, furthermore, the mechanisms of farnesol on the synthesis of type II collagen from the de-differentiated chondrocytes. The obtained results showed that the de-differentiated chondrocytes significantly restored to secret type II collagen and GAG (2.5-folds increases), and the secretion of collagen I and X and PGE2 synthesis were also significantly reduced after being treated with farnesol, indicating that farnesol had a restoration/re-differentiation effect on de-differentiated chondrocytes. The de-differentiated chondrocytes exhibited decreased expression of PPAR-γ and upregulated TGF-β expression to increase the MMP-13 expression. Higher expression of MMP-13 caused chondrocytes to secret type X collagen. On the contrary, increasing the expression of PPAR-γ would benefit the production of type II collagen. As shown, the PPAR-γ expression increased, and MMP-13 expression decreased after being treated with farnesol, indicating a possible signal pathway of farnesol to restore the production of type II collagen. However, more detailed mechanisms still need to evaluate.

Keywords: chondrocytes, de-differentiation, farnesol, re-differentiation

Procedia PDF Downloads 91
88 Comparison of the Proprioception Sense and Standing Balance in Patients with Osteoarthritis Before and After Total Knee Arthroplasty Surgery

Authors: S. Daneshi, G. Shahcheraghi, F. Ghaffarinejad

Abstract:

Back ground: Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people around the world during the aging process. Knee joint proprioception sense decrease with OA and Total Knee Arthroplasty (TKA) surgery may affect them. We investigated two parameters of proprioception sense (the joint position sense and kinesthesia) and standing balance in affected limbs before and after TKA, in patient with Knee OA. Methods and Materials: In this Analytic study, 10 patients who were candidate for TKA during two months in Dena Hospital of Shiraz, selected for further analysis. All of cases were female in range of 55-70 years old. Participants assessed before and two weeks after TKA using three instruments: electrogoniometer and continuous passive motion (CPM) to assess Knee joint position sense and kinesthesia in 20 and 45 degrees; and chronometer to assess duration of standing balance on affected leg with open and closed eyes. Results: To examine differences between before and after of TKA scorings Willcoxon Signed Rank and Mann-Whitney was performed which indicated no significant differences between knee joint position sense and kinesthesia in 20 and 45 degrees (P>0.05) and no significant differences between Standing Balance in a patient with knee OA before and after TKA (P>0.05). Conclusion: The study indicates that, OA can affect proprioception sense and standing balance but TKA doesn’t have any effect on these parameters. Intra articular structures such as cruciate ligaments and mines are responsible for proprioception sense in normal knee joint. Since in severe knee OA the number of mechanoreceptors in these intra articular structures decrease and their function reduce more than normal knee joint, so the anterior cruciate ligaments (ACL) become defected, thus after TKA surgery which this ligament is removed no significant change was found in proprioception sense. As a result of involving proprioception sense, muscles strength and the function of vestibular system in balance, standing balance did not show significant difference before and after TKA.

Keywords: knee joint, proprioception sense, standing balance, rehabilitation sciences

Procedia PDF Downloads 348
87 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution

Authors: C. K. Ngaw

Abstract:

Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.

Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets

Procedia PDF Downloads 32
86 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 360
85 A Low Cost Gain-Coupled Distributed Feedback Laser Based on Periodic Surface p-Contacts

Authors: Yongyi Chen, Li Qin, Peng Jia, Yongqiang Ning, Yun Liu, Lijun Wang

Abstract:

The distributed feedback (DFB) lasers are indispensable in optical phase array (OPA) used for light detection and ranging (LIDAR) techniques, laser communication systems and integrated optics, thanks to their stable single longitudinal mode and narrow linewidth properties. Traditional index-coupled (IC) DFB lasers with uniform gratings have an inherent problem of lasing two degenerated modes. Phase shifts are usually required to eliminate the mode degeneration, making the grating structure complex and expensive. High-quality antireflection (AR) coatings on both lasing facets are also essential owing to the random facet phases introduced by the chip cleavage process, which means half of the lasing energy is wasted. Gain-coupled DFB (GC-DFB) lasers based on the periodic gain (or loss) are announced to have single longitudinal mode as well as capable of the unsymmetrical coating to increase lasing power and efficiency thanks to facet immunity. However, expensive and time-consuming technologies such as epitaxial regrowth and nanoscale grating processing are still required just as IC-DFB lasers, preventing them from practical applications and commercial markets. In this research, we propose a low-cost, single-mode regrowth-free GC-DFB laser based on periodic surface p-contacts. The gain coupling effect is achieved simply by periodic current distribution in the quantum well caused by periodic surface p-contacts, introducing very little index-coupling effect that can be omitted. It is prepared by i-line lithography, without nanoscale grating fabrication or secondary epitaxy. Due to easy fabrication techniques, it provides a method to fabricate practical low cost GC-DFB lasers for widespread practical applications.

Keywords: DFB laser, gain-coupled, low cost, periodic p-contacts

Procedia PDF Downloads 100
84 Self-Healing Hydrogel Triggered by Magnetic Microspheres to Control Glutathione Release for Cartilage Repair

Authors: I-Yun Cheng, Min-Yu Chiang, Shwu-Jen Chang, San-Yuan Chen

Abstract:

Osteoarthritis (OA) is among the most challenging joint diseases, and as far as we know, there is currently no exact and effective cure for it because it has low self-repair ability due to lack of blood vessels and low cell density in articular cartilage. So far, there have been several methods developed to treat cartilage disorder. The most common method is to treat the high molecular weight of hyaluronic acid (HA) injection, but it will degrade after a period of time, so the patients need to inject HA repeatedly. In recent years, self-healing hydrogel has drawn considerable attention because it can recover its initial mechanical properties after damaged and further increase the lifetime of the hydrogel. Here, we aim to develop a self-healable composite hydrogel combined with magnetic microspheres to trigger glutathione(GSH) release for promoting cartilage repair. We use HA-cyclodextrin (CD) as host polymer and poly(acrylic acid)-ferrocene (pAA-Fc) as guest polymer to form the self-healable HA-pAA hydrogel by host and guest interaction where various graft amount of pAA-Fc (pAA:Fc= 1:2, 1:1.5, 1:1, 2:1, 4:1) was conducted to develop different mechanical strength hydrogel. The rheology analysis showed that the 4:1 of pAA-Fc has higher mechanical strength than other formulations. On the other hand, iron oxide nanoparticle, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI) were used to synthesize porous magnetic microspheres via double emulsification water-in-oil-in-water (W/O/W) to increase GSH loading which acted as a reductant to control the hydrogel crosslink density and promote hydrogel self-healing. The results show that the porous magnetic microspheres can be loaded with 70% of GSH and sustained release about 50% of GSH after 24 hours. More importantly, the HA-pAA composite hydrogel can self-heal rapidly within 24 hours when suffering external force destruction by releasing GSH from the magnetic microspheres. Therefore, the developed the HA-pAA composite hydrogel combined with GSH-loaded magnetic microspheres can be in-vivo guided to damaged OA surface for inducing the cartilage repair by controlling the crosslinking of self-healing hydrogel via GSH release.

Keywords: articular cartilage, magnetic microsphere, osteoarthritis, self-healing hydrogel

Procedia PDF Downloads 99
83 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 425
82 Correlative Study of Serum Interleukin-18 and Disease Activity, Functional Disability and Quality of Life in Rheumatoid Arthritis Patients

Authors: Hamdy Khamis Korayem, Manal Yehia Tayel, Abeer Shawky El Hadedy, Emmanuel Kamal Aziz Saba, Shimaa Badr Abdelnaby Badr

Abstract:

The aim of the current study was to demonstrate whether serum Interleukin-18 (IL-18) is increased in rheumatoid arthritis (RA) and its correlation with disease activity, functional disability and quality of life in RA patients. The study included 30 RA patients and 20 healthy normal control subjects. The RA patients were diagnosed according to the 2010 ACR/EULAR classification criteria for RA with the exclusion of those who had diabetes mellitus, endocrine disorders, associated rheumatologic diseases, viral hepatitis B or C and other diseases with increased serum IL-18 level. All patients were subjected to clinical evaluation of the musculoskeletal system. Disease activity was assessed by disease activity score 28 with 4 variables (DAS 28). Functional disability was assessed by health assessment questionnaire disability index (HAQ-DI). The quality of life was assessed by Short form-36 (SF-36) questionnaire. Radiological assessment of both hands and feet by Sharp/van der Heijde (SvH) scoring method. Laboratory parameters including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF) and anti-cyclic citrullinated peptide antibody (ACPA) were assessed in patients and serum level of IL-18 in both patients and control subjects. There was no statistically significant difference between patient and control group as regards age and sex. Among patients, 29 % were females and the age range was between 25 to 55 years. Extra-articular manifestations were presented in 56.7% of the patients. The mean of DAS 28 score was 5.73±1.46 and that of HAQ-DI was 1.22±0.72 while that of SF-36 was 40.03±13.96. The level of serum IL-18 was significantly higher in patients than in the control subjects (P= 0.030). Serum IL-18 was correlated with ACPA among the patient group. There were no statistically significant correlations between serum IL-18 and DAS28, HAQ-DI, SF-36, total SvH score and the other laboratory results. In conclusion, IL-18 is significantly higher in RA patient than in healthy control subjects and positively correlated with ACPA level. IL-18 is associated with extra-articular manifestations. However, it is not correlated with other laboratory parameters, disease activity, functional disability, quality of life nor radiological severity.

Keywords: disease activity score, Interleukin-18, quality of life assessment, rheumatoid arthritis

Procedia PDF Downloads 295
81 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 246
80 Management of Gap Non-Union Following Tumour Resection of the Distal Femur

Authors: Rajendra Kumar Kanojia

Abstract:

Correction of the gap created by the resection of large juxtra-articular tumours of the femur would be difficult to manage, several bone substitutes, bone grafts, and artificial bone granules were tried but the results were not as good as with the distraction osteogensis, by the help of either Ilizarov ring fixator or the mono-rail fixators. We are presenting a small study of five cases of malignant tumours of the distal femur, removed, custom made mega prosthesis was applied and that failed twice in a span of five years. We had no better option left then to apply mono-rail fixator, and start the process of distraction osteogeneis, we got the union, gap was filled with new bone and patient has been made walking in few months.

Keywords: distal femur tumour, resection, defect non-union, mono-rail fixator

Procedia PDF Downloads 338
79 Unidentified Remains with Extensive Bone Disease without a Clear Diagnosis

Authors: Patricia Shirley Almeida Prado, Selma Paixão Argollo, Maria De Fátima Teixeira Guimarães, Leticia Matos Sobrinho

Abstract:

Skeletal differential diagnosis is essential in forensic anthropology in order to differentiate skeletal trauma from normal osseous variation and pathological processes. Thus, part of forensic anthropological field is differentiate skeletal criminal injuries from the normal skeletal variation (bone fusion or nonunion, transitional vertebrae and other non-metric traits), non-traumatic skeletal pathology (myositis ossificans, arthritis, bone metastasis, osteomyelitis) from traumatic skeletal pathology (myositis ossificans traumatic) avoiding misdiagnosis. This case shows the importance of effective pathological diagnosis in order to accelerate the identification process of skeletonized human remains. THE CASE: An unidentified skeletal remains at the medico legal institute Nina Rodrigues-Salvador, of a male young adult (29 to 40 years estimated) showing a massive heterotopic ossification on its right tibia at upper epiphysis and adjacent articular femur surface; an extensive ossification on the right clavicle (at the sternal extremity) also presenting an heterotopic ossification at right scapulae (upper third of scapulae lateral margin and infraglenoid tubercule) and at the head of right humerus at the shoulder joint area. Curiously, this case also shows an unusual porosity in certain vertebrae´s body and in some tarsal and carpal bones. Likewise, his left fifth metacarpal bones (right and left) showed a healed fracture which led both bones distorted. Based on identification, of pathological conditions in human skeletal remains literature and protocols these alterations can be misdiagnosed and this skeleton may present more than one pathological process. The anthropological forensic lab at Medico-legal Institute Nina Rodrigues in Salvador (Brazil) adopts international protocols to ancestry, sex, age and stature estimations, also implemented well-established conventions to identify pathological disease and skeletal alterations. The most compatible diagnosis for this case is hematogenous osteomyelitis due to following findings: 1: the healed fracture pattern at the clavicle showing a cloaca which is a pathognomonic for osteomyelitis; 2: the metacarpals healed fracture does not present cloaca although they developed a periosteal formation. 3: the superior articular surface of the right tibia shows an extensive inflammatory healing process that extends to adjacent femur articular surface showing some cloaca at tibia bone disease. 4: the uncommon porosities may result from hematogenous infectious process. The fractures probably have occurred in a different moments based on the healing process; the tibia injury is more extensive and has not been reorganized, while metacarpals and clavicle fracture is properly healed. We suggest that the clavicle and tibia´s fractures were infected by an existing infectious disease (syphilis, tuberculosis, brucellosis) or an existing syndrome (Gorham’s disease), which led to the development of osteomyelitis. This hypothesis is supported by the fact that different bones are affected in diverse levels. Like the metacarpals that do not show the cloaca, but then a periosteal new bone formation; then the unusual porosities do not show a classical osteoarthritic processes findings as the marginal osteophyte, pitting and new bone formation, they just show an erosive process without bone formation or osteophyte. To confirm and prove our hypothesis we are working on different clinical approaches like DNA, histopathology and other image exams to find the correct diagnostic.

Keywords: bone disease, forensic anthropology, hematogenous osteomyelitis, human identification, human remains

Procedia PDF Downloads 298
78 Simple Fabrication of Au (111)-Like Electrode and Its Applications to Electrochemical Determination of Dopamine and Ascorbic Acid

Authors: Zahrah Thamer Althagafi, Mohamed I. Awad

Abstract:

A simple method for the fabrication of Au (111)-like electrode via controlled reductive desorption of a pre-adsorbed cysteine monolayer onto polycrystalline gold (poly-Au) electrode is introduced. Then, the voltammetric behaviour of dopamine (DA) and ascorbic acid (AA) on the thus modified electrode is investigated. Electrochemical characterization of the modified electrode is achieved using cyclic voltammetry and square wave voltammetry. For the binary mixture of DA and AA, the results showed that Au (111)-like electrode exhibits excellent electrocatalytic activity towards the oxidation of DA and AA. This allows highly selective and simultaneous determination of DA and AA. The effect of various experimental parameters on the voltammetric responses of DA and AA was investigated. The enrichment of the Au (111) facet of the poly-Au electrode is thought to be behind the electrocatalytic activity.

Keywords: gold electrode, electroanalysis, electrocatalysis, monolayers, self-assembly, cysteine, dopamine, ascorbic acid

Procedia PDF Downloads 161
77 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 349
76 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy

Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani

Abstract:

Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.

Keywords: chitosan, leakage, radiosynovectomy, rhenium

Procedia PDF Downloads 306
75 Good Marketing is an Important Factor for the Success of the Institution

Authors: Maamar Moumena

Abstract:

the Follower of the movement of international competition finds that the success of Japanese companies to break into global markets and win a competitive edge and meet the challenges of this competition, due primarily to the adoption of these companies to the modern concept of marketing, and possession of sophisticated marketing systems, with a focus on pricing policy. The institution's ability to produce goods and services be limited unless accompanied by an effective marketing effort. So the satisfaction of the consumer needs efficiently and effectiveness are unwarranted economic and social presence in the market, and ensure the continuity and achieve their goals, and this can only be achieved through marketing activity, where he activity facet which translates the output of the institution and its presence in the form of financial compensation, and that the inclusion of and marketing function within the functions of the institution and awarded each of gravity reflects the extent of their importance in the conduct of the future of the institution, and depending on excellence in performance and a good application of the basic concepts of marketing and primarily make the consumer focus of attention, so the pleasing of the consumer and earn his allegiance reflects the success of an organization.

Keywords: competition, marketing, institution, consumer

Procedia PDF Downloads 246
74 Exploring the Biocompatibility and Performance of Metals and Ceramics as Biomaterials, A Comprehensive Study for Advanced Medical Applications

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Biomaterials, specifically metals and ceramics, are indispensable components in the realm of medical science, shaping the landscape of implantology and prosthetics. This study delves into the intricate interplay between these materials and biological systems, aiming to scrutinize their suitability, performance, and biocompatibility. Employing a multi-faceted approach, a range of methodologies were meticulously employed to comprehensively characterize these biomaterials. Advanced material characterization techniques were paramount in this research, with scanning electron microscopy providing intricate insights into surface morphology, and X-ray diffraction unraveling the crystalline structures. These analyses were complemented by in vitro assessments, which gauged the biological response of cells to metals and ceramics, shedding light on their potential applications within the human body. A key facet of our investigation involved a comparative study, evaluating the corrosion resistance and osseointegration potential of both metals and ceramics. Through a series of experiments, we sought to understand how these biomaterials interacted with physiological environments, paving the way for informed decisions in medical applications

Keywords: metals, ceramics, biomaterials, biocompatibility, osseointegration

Procedia PDF Downloads 23
73 Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats

Authors: Ivan Župan

Abstract:

Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure.

Keywords: critical infrastructure, cyber-physical security, smart industry, security methodology, security technology

Procedia PDF Downloads 47