Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3100

Search results for: industrial wastewater

3100 Industrial Wastewater Treatment Improvements Using Limestone

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran


The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.

Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal

Procedia PDF Downloads 326
3099 Performance of an Anaerobic Baffled Reactor (ABR) Treating High-Strength Food Industrial Wastewater with Fluctuating pH

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa


As awareness of the variable nature of food industrial wastewater and its environmental impact grows, a more stable treatment reactor is needed to treat such wastewater. In this paper, a performance of 5-compartment lab-scale Anaerobic Baffled Reactor (ABR) treating high strength wastewater with high pH variation was studied under three organic loading rates (OLRs). The reactor showed high COD removal efficiencies: 92.67, 97.44, and 98.19% corresponding to OLRs of 2.0, 3.0, and 4.8 KgCOD/m3 d, respectively. The first compartment showed a good buffering capacity and a distinct phase separation occurred in the ABR.

Keywords: anaerobic baffled reactor, food industrial wastewater, high strength wastewater, organic loading, pH

Procedia PDF Downloads 290
3098 Development of Model for Effective Sub- District Municipality Wastewater Management

Authors: Vitool Suksankavanich


This preliminary research aimed to explore the development of wastewater management of Bang Pu Sub- District Municipality, Samutprakan Province, in order to establish appropriate model for effective wastewater management that fit to the context of the area. The research posed three questions: [i] to what extent the promotion of social responsibility awareness built among the local community resulted in effectiveness of the local wastewater management; [ii] did the waste disposal management of Bang Pu Industrial Estate contribute to the overall environmental quality of Bang Pu Sub- District Municipality; and [iii] did the relationship between the community and the industrial factories have any effect on the wastewater management. The in- depth interview revealed main obstacles occurred in the process of wastewater management in the area. The fieldwork also contributed to a product of an appropriate model of effective wastewater management.

Keywords: legitimacy theory, stakeholder theory, social responsibility, wastewater management

Procedia PDF Downloads 296
3097 MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning

Authors: A. A. Hassani, M. Nasri Nasrabadi


According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%.

Keywords: industrial wastewater, wastewater reuse, MBR, RO

Procedia PDF Downloads 152
3096 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh


Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 88
3095 Heavy Metal Removal by Green Microalgae Biofilms from Industrial Wastewater

Authors: B. N. Makhanya, S. F. Ndulini, M. S. Mthembu


Heavy metals are hazardous pollutants present in both industrial and domestic wastewater. They are usually disposed directly into natural streams, and when left untreated, they are a major cause of natural degradation and diseases. This study aimed to determine the ability of microalgae to remove heavy metals from coal mine wastewater. The green algae were grown and used for heavy metal removal in a laboratory bench. The physicochemical parameters and heavy metal removal were determined at 24 hours intervals for 5 days. The highest removal efficiencies were found to be 85%, 95%, and 99%, for Fe, Zn, and Cd, respectively. Copper and aluminium both had 100%. The results also indicated that the correlation between physicochemical parameters and all heavy metals were ranging from (0.50 ≤ r ≤ 0.85) for temperature, which indicated moderate positive to a strong positive correlation, pH had a very weak negative to a very weak positive correlation (-0.27 ≤ r ≤ 0.11), and chemical oxygen demand had a fair positive to a very strong positive correlation (0.69 ≤ r ≤ 0.98). The paired t-test indicated the removal of heavy metals to be statistically significant (0.007 ≥ p ≥ 0.000). Therefore, results showed that the microalgae used in the study were capable of removing heavy metals from industrial wastewater using possible mechanisms such as binding and absorption. Compared to the currently used technology for wastewater treatment, the microalgae may be the alternative to industrial wastewater treatment.

Keywords: heavy metals, industrial wastewater, microalgae, physiochemical parameters

Procedia PDF Downloads 21
3094 Impact on Vegetables Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Nida Rabab


The present study was conducted to assess the Impact on Vegetables Irrigated with Municipal and Industrial wastewater from Korangi Drain near IoBM, Karachi. Some vegetables are grown using sewage and industrial wastewater laden with alarmingly high levels of heavy metals and bacteriological contamination. Maximum concentration of lead was found in spinach 8.20 mg/l as against safe limits of 0.01 mg/l and maximum nickel concentration was found in banana 3.114 mg/l as against 0.02 mg/l, whereas all vegetables were invariably bacteriologically contaminated much beyond safe limits. Appropriate legislations in Sindh and competent manpower for rigorous monitoring to gage the harmful impact on vegetables grown with untreated municipal and industrial wastewater to effectively combat the problems of growing vegetables. The emptying of untreated municipal and industrial wastewater through Korangi Drain in fresh water bodies into Karachi cost should be banned to save the coast becoming hypoxic causing irreparable loss to marine life.

Keywords: laden, concentration, hypoxic, vegetables

Procedia PDF Downloads 184
3093 Removal of Heavy Metals in Wastewater Treatment System of Suan Sunandha Rajabhat University

Authors: Pantip Kayee, Yuwadee Yaponha, Jiranit Pongtubthai


This study focused on the determination of heavy metal concentration in wastewater and the investigation of heavy metal removal of wastewater treatment system of Suan Sunandha Rajabhat University. Heavy metals (Pb, Cu, Mn, Ni and Zn) were found in wastewater of Suan Sunandha Rajabhat University. Wastewater treatment systems of Suan Sunandha Rajabhat University showed the performance to remove heavy metals. However, heavy metals were still presented in effluent but these residue heavy metals were not over the standard for industrial wastewater. Wastewater treatment system can remove heavy metal by different process such as bioaccumulation by microorganism and biosorption on activated sludge.

Keywords: heavy metal, wastewater, bioaccumulation, biosorption

Procedia PDF Downloads 310
3092 Domestic Wastewater Treatment by Microalgae – Removal of Nitrogen

Authors: A. Siham Dehmani, B. Djamal Zerrouki


Domestic wastewater contains high concentrations of nitrogen, which can affect public health and cause harmful ecological impacts. The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. The microalgae cultivation in wastewater has two advantages: wastewater treatment and algal biomass production. Our work aimed to remove nitrogen from municipal wastewater. Wastewater samples were taken from the wastewater treatment station located in Ouargla and used as a medium for the cultivation of chlorella microalgae strains inside a photobioreactor. Analysis of different parameters was done every 2 days along the period of the cultivation (10 days). The average removal efficiencies of nitrogen were maintained at 95%. Our results show the potential of integrating nutrient removal from wastewater by microalgae as a secondary wastewater treatment processes.

Keywords: biomass, microalgae, treatment, wastewater

Procedia PDF Downloads 284
3091 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin


This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 63
3090 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi

Authors: Farhan Ali


Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.

Keywords: pathogens, wastewater, concentration, effluent

Procedia PDF Downloads 192
3089 Industrial Wastewater Treatment Improvements Using Activated Carbon

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran


The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances.

Keywords: adsorption, COD removal, filtration, TDS removal

Procedia PDF Downloads 374
3088 Effects of Reclaimed Agro-Industrial Wastewater for Long-Term Irrigation of Herbaceous Crops on Soil Chemical Properties

Authors: E. Tarantino, G. Disciglio, G. Gatta, L. Frabboni, A. Libutti, A. Tarantino


Worldwide, about two-thirds of industrial and domestic wastewater effluent is discharged without treatment, which can cause contamination and eutrophication of the water. In particular, for Mediterranean countries, irrigation with treated wastewater would mitigate the water stress and support the agricultural sector. Changing global weather patterns will make the situation worse, due to increased susceptibility to drought, which can cause major environmental, social, and economic problems. The study was carried out in open field in an intensive agricultural area of the Apulian region in Southern Italy where freshwater resources are often scarce. As well as providing a water resource, irrigation with treated wastewater represents a significant source of nutrients for soil–plant systems. However, the use of wastewater might have further effects on soil. This study thus investigated the long-term impact of irrigation with reclaimed agro-industrial wastewater on the chemical characteristics of the soil. Two crops (processing tomato and broccoli) were cultivated in succession in Stornarella (Foggia) over four years from 2012 to 2016 using two types of irrigation water: groundwater and tertiary treated agro-industrial wastewater that had undergone an activated sludge process, sedimentation filtration, and UV radiation. Chemical analyses were performed on the irrigation waters and soil samples. The treated wastewater was characterised by high levels of several chemical parameters including TSS, EC, COD, BOD5, Na+, Ca2+, Mg2+, NH4-N, PO4-P, K+, SAR and CaCO3, as compared with the groundwater. However, despite these higher levels, the mean content of several chemical parameters in the soil did not show relevant differences between the irrigation treatments, in terms of the chemical features of the soil.

Keywords: agro-industrial wastewater, broccoli, long-term re-use, tomato

Procedia PDF Downloads 253
3087 Wastewater Treatment Using Microalgae

Authors: Chigbo Ikechukwu Emmanuel


Microalgae can be used for tertiary treatment of wastewater due to their capacity to assimilate nutrients. The pH increase which is mediated by the growing algae also induces phosphorus precipitation and ammonia stripping to the air, and may in addition act disinfecting on the wastewater. Domestic wastewater is ideal for algal growth since it contains high concentrations of all necessary nutrients. The growth limiting factor is rather light, especially at higher latitudes. The most important operational factors for successful wastewater treatment with microalgae are depth, turbulence and hydraulic retention time.

Keywords: microalgae, wastewater treatment, phosphorus, nitrogen, light, operation, ponds, growth

Procedia PDF Downloads 315
3086 Environmental Engineering Case Study of Waste Water Treatement

Authors: Harold Jideofor


Wastewater treatment consists of applying known technology to improve or upgrade the quality of a wastewater. Usually wastewater treatment will involve collecting the wastewater in a central, segregated location (the Wastewater Treatment Plant) and subjecting the wastewater to various treatment processes. Most often, since large volumes of wastewater are involved, treatment processes are carried out on continuously flowing wastewaters (continuous flow or "open" systems) rather than as "batch" or a series of periodic treatment processes in which treatment is carried out on parcels or "batches" of wastewaters. While most wastewater treatment processes are continuous flow, certain operations, such as vacuum filtration, involving storage of sludge, the addition of chemicals, filtration and removal or disposal of the treated sludge, are routinely handled as periodic batch operations.

Keywords: wastewater treatment, environmental engineering, waste water

Procedia PDF Downloads 271
3085 Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate

Authors: Saira Khalid, Imran Hashmi


Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells.

Keywords: biodegradation, chlorpyrifos, immobilization, wastewater

Procedia PDF Downloads 80
3084 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar


The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 225
3083 Desodesmus sp.: A Potential Micro Alga to Treat the Textile Wastewater

Authors: Thirunavoukkarasu Manikkannan, Karpanai Selvan Balasubramanian


Textile industry is the one of the most important industrial sector in India. It accounts for 5% of total Gross Domestic Product (GDP) in the country. A Textile industry consumes large quantities of water (~250 m3/ton of product) and they generate almost ~90% of wastewater from its consumption. The problem is alarming and requires proper treatment process to acquire dual benefit of Zero Liquid Discharge and no contamination to the environment. Here we describe the process by which the textile wastewater can be reused. We have collected the textile wastewater in and around Ayyampettai area of Tamilnadu, India. Among different microalgal strains used, Desodesmus sp. collected at Manali, Chennai, Tamilnadu, India was able to lessen the colour of the waste water in 12-15 hrs of its growth, COD around 81.7%, Dissolved solid reduction was 28 ± 0.5 %, Suspended solid was reduced to 40.5 ± 0.3 %, Dye degradation was 50-78%. Further, Desodesmus sp. able to achieve the biomass of 0.9 ± 0.2 g/L (dry weight) in two weeks’ time, the Chl a content was 11 mg/L. It infers that this algal strain able to utilize the textile wastewater as source for growth and algal biomass production.

Keywords: Desodesmus sp., microalgae, textile, treatment, wastewater

Procedia PDF Downloads 80
3082 Bioelectrochemical System: An Alternative Technology for Metal Removal from Industrial Wastewater and Factors Affecting Its Efficiency

Authors: A. G. More


Bioelectrochemical system (BES) is an alternative technology for chromium Cr (VI) removal from industrial wastewater to overcome the existing drawbacks of high chemical and energy consumption by conventional metal removal technologies. A well developed anaerobic sludge was developed in laboratory and used in the batch study of BES at different Cr (VI) concentrations (10, 20, 50, and 50 mg/L) with different COD concentrations (500, 1000, 1500 and 2000 mg/L). Sodium acetate was used as carbon source, whereas Cr (VI) contaminated synthetic wastewater was prepared and added to the cathode chamber. Initially, operating conditions for the BES experiments were optimized. During the study, optimum cathode pH of 2, whereas optimum HRT of 72 hr was obtained. During the study, cathode pH 2 ± 0.1 showed maximum chromium removal efficicency (CRE) of 88.36 ± 8.16% as compared to other pH (1-7) in the cathode chamber. Maximum CRE obtained was 85.93 ± 9.62% at 40°C within the temperature range of 25°C to 45°C. Conducting the BES experiments at optimized operating conditions, CRE of 90.2 %, 93.7 %, 83.75 % and 74.6 % were obtained at cathodic Cr concentration of 10, 20, 50, and 50 mg/L, respectively. BES is a sustainable, energy efficient technology which can be suitably used for metal removal from industrial wastewater.

Keywords: bioelectrochemical system, metal removal, microorganisms, pH and temperature, substrate

Procedia PDF Downloads 49
3081 Removal of P-Nitrophenol in Wastewater by Using Fe-Nano Zeolite Synthesized

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Chi-Hyeon Lee, JiTae Kim


This study analyzed the removal of p-nitrophenol from wastewater using Fe-nano zeolite synthesized. The basic physical-chemical properties of Fe-nano zeolite was determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy. We focus on finding out the optimum conditions in adsorption and desorption processes for removal of p-nitrophenol by using Fe-nano zeolite in wastewater. The optimum pH for p-nitrophenol removal in wastewater was 5.0. Adsorption isotherms were better fitted with the Langmuir isotherm than with the Freundlich with 165.58 mg/g adsorption capacity of p-nitrophenol. These findings support potential of Fe-nano zeolite as an effective adsorbent for p-nitrophenol removal from wastewater.

Keywords: Fe-nano zeolite, adsorption, wastewater, regeneration

Procedia PDF Downloads 143
3080 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux


With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 270
3079 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan


In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 73
3078 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater

Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie


This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.

Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater

Procedia PDF Downloads 139
3077 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry

Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery


2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.

Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds

Procedia PDF Downloads 224
3076 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, H. B. Rekha, Mahaveer Devoor


The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment-as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high colour, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of colour. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pre-treated by electrochemical oxidation method where the process limits objectionable colour while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: electrochemical treatment, COD, colour, environmental engineering

Procedia PDF Downloads 171
3075 Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran

Authors: Larbi Hammadi, Abdellatif El Bari Tidjani


In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough.

Keywords: El-Karma wastewater, TSS concentrations, COD and BOD5, COD/BOD5 ratio, treatment

Procedia PDF Downloads 85
3074 Chemical Treatment of Wastewater through Biosorption for the Removal of Toxic Metals

Authors: Shafiq Alam, Manjunathan Ulaganathan


Water/wastewater often contains heavy/toxic metals, such as lead, copper, zinc and arsenic as well as harmful elements, such as antimony, selenium and fluoride. It may also contains radioactive elements, such as cesium and strontium. If they are not removed from water/wastewater then the environment and human health can be negatively impacted. Extensive research has been carried out to remove such harmful metals/elements from water/wastewater through biosorption using biomaterials (bioadsorbents). This presentation will give an overview of the research on preparation of bioadsorbents from biomass wastes and their use for the removal of harmful metals/elements from aqueous media.

Keywords: biosorption, environmental, toxic metals, wastewater

Procedia PDF Downloads 147
3073 Quality Characteristics of Treated Wastewater of 'Industrial Area Foggia'

Authors: Grazia Disciglio, Annalisa Tarantino, Emanuele Tarantino


The production system of Foggia province (Apulia, Southern Italy) is characterized by the presence of numerous agro-food industries whose activities include the processing of vegetables products that release large quantities of wastewater. The reuse in agriculture of these wastewaters offers the opportunity to reduce the costs of their disposal and minimizing their environmental impact. In addition, in this area, which suffers from water shortage, the use of agro-industrial wastewater is essential in the very intensive irrigation cropping systems. The present investigation was carried out in years 2009 and 2010 to monitor the physico-chemical and microbiological characteristics of the industrial wastewater (IWW) from the secondary treatment plant of the 'Industrial Area of Foggia'. The treatment plant released on average about 567,000 m3y-1 of IWW, which distribution was not uniform over the year. The monthly values were about 250,000 m3 from November to June and about 90,000 m3 from July to October. The obtained results revealed that IWW was characterized by low values of Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical Conductivity (EC) and Sodium Absorption Rate (SAR). An occasional presence of heavy metal and high concentration of total phosphorus, total nitrogen, ammoniacal nitrogen and microbial organisms (Escherichia coli and Salmonella) were observed. Due to the presence of this pathogenic microorganisms and sometimes of heavy metals, which may raise sanitary and environmental problems in order to the possible irrigation reuse of this IWW, a tertiary treatment of wastewater based on filtration and disinfection in line are recommended. Researches on the reuse of treated IWW on crops (olive, artichoke, industrial tomatoes, fennel, lettuce etc.) did not show significant differences among the irrigated plots for most of the soil and yield characteristics.

Keywords: agroindustrial wastewater, irrigation, microbiological characteristic, physico-chemical characteristics

Procedia PDF Downloads 217
3072 Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa


Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d

Keywords: anaerobic baffled reactor, anaerobic reactor start-up, food industrial wastewater, specific methanogenic activity

Procedia PDF Downloads 245
3071 Synthesis and Application of Tamarind Hydroxypropane Sulphonic Acid Resin for Removal of Heavy Metal Ions from Industrial Wastewater

Authors: Aresh Vikram Singh, Sarika Nagar


The tamarind based resin containing hydroxypropane sulphonic acid groups has been synthesized and their adsorption behavior for heavy metal ions has been investigated using batch and column experiments. The hydroxypropane sulphonic acid group has been incorporated onto tamarind by a modified Porath's method of functionalisation of polysaccharides. The tamarind hydroxypropane sulphonic acid (THPSA) resin can selectively remove of heavy metal ions, which are contained in industrial wastewater. The THPSA resin was characterized by FTIR and thermogravimetric analysis. The effects of various adsorption conditions, such as pH, treatment time and adsorbent dose were also investigated. The optimum adsorption condition was found at pH 6, 120 minutes of equilibrium time and 0.1 gram of resin dose. The orders of distribution coefficient values were determined.

Keywords: distribution coefficient, industrial wastewater, polysaccharides, tamarind hydroxypropane sulphonic acid resin, thermogravimetric analysis, THPSA

Procedia PDF Downloads 114