Search results for: activated carbon AC35-methanol pair
1659 Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles
Authors: Mohamed Khedr, Ahmed Farghali, Waleed El Rouby, Abdelrhman Hamdeldeen
Abstract:
Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-.Keywords: CeO2, doped CeO2, photocatalysis, methylene blue
Procedia PDF Downloads 3281658 Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs
Authors: Eder Amayuelas, Begoña Bazán, M. Karmele Urtiaga, Gotzone Barandika, María I. Arriortua
Abstract:
Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process.Keywords: adsorption, organic dyes, iodine, metal organic frameworks
Procedia PDF Downloads 2761657 Opuntia ficus-indica var. Saboten Stimulates Adipogenesis, Lipolysis, and Glucose Uptake in 3T3-L1 Adipocytes
Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem
Abstract:
The prickly pear cactus (Opuntia ficus-indica) has a global distribution and has been used for medicinal benefits such as artherosclerosis, diabetes, gastritis, and hyperglycemia. The prickly pear variety Opuntia ficus-indica var. Saboten (OFS) is widely cultivated in Cheju Island, the southwestern region of Korea, and used as a functional food. The present study investigated the effects of OFS on adipogenesis, lipolysis, glucose uptake, and glucose transporter (GLUT4) expression using preadipocyte 3T3-L1 cells. Adipogenesis was determined by preadipocyte differentiation and triglyceride accumulation assessed by Oil Red O staining. Lipolysis was determined as the rate of glycerol release. Insulin-stimulated glucose uptake and GLUT4 expression were measured using fluorescent glucose analogue, 2-NBDG, and ELISA, respectively. Quantitative real-time RT-PCR was performed to investigate the effects of OFS on the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation. Ethanol extracts of OFS dose-dependently enhanced adipocyte differentiation and cellular triglyceride levels indicating the enhancement of the differentiation of preadipocytes into adipocytes. Insulin-stimulated glucose uptake and GLUT4 expression were also dose-dependently increased by OFS treatment. Furthermore, OFS treatment also increased the mRNA levels of PPARγ. These effects of OFS on adipocytes suggest that OFS is potentially beneficial for type 2 diabetes by due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.Keywords: 3T3-L1 preadipocyte cell, adipogenesis, GLUT4, lipolysis, Opuntia ficus-indica var. Saboten, PPARγ, prickly pear cactus
Procedia PDF Downloads 3991656 3D-Shape-Perception Studied Exemplarily with Tetrahedron and Icosahedron as Prototypes of the Polarities Sharp versus Round
Authors: Iris Sauerbrei, Jörg Trojan, Erich Lehner
Abstract:
Introduction and significance of the study: This study examines if three-dimensional shapes elicit distinct patterns of perceptions. If so, it is relevant for all fields of design, especially for the design of the built environment. Description of basic methodologies: The five platonic solids are the geometrical base for all other three-dimensional shapes, among which tetrahedron and icosahedron provide the clearest representation of the qualities sharp and round. The component pair of attributes ‘sharp versus round’ has already been examined in various surveys in a psychology of perception and in neuroscience by means of graphics, images of products of daily use, as well as by photographs and walk-through-videos of landscapes and architecture. To verify a transfer of outcomes of the existing surveys to the perception of three-dimensional shapes, walk-in models (total height 2.2m) of tetrahedron and icosahedron were set up in a public park in Frankfurt am Main, Germany. Preferences of park visitors were tested by questionnaire; also they were asked to write down associations in a free text. In summer 2015, the tetrahedron was assembled eight times, the icosahedron seven times. In total 288 participants took part in the study; 116 rated the tetrahedron, 172 rated the icosahedron. Findings: Preliminary analyses of the collected data using Wilcoxon Rank-Sum tests show that the perceptions of the two solids differ in respect to several attributes and that each of the tested model show significance for specific attributes. Conclusion: These findings confirm the assumptions and provide first evidence that the perception of three-dimensional shapes are associated to characteristic attributes and to which. In order to enable conscious choices for spatial arrangements in design processes for the built environment, future studies should examine attributes for the other three basic bodies - Octahedron, Cube, and Dodecahedron. Additionally, similarities and differences between the perceptions of two- and three-dimensional shapes as well as shapes that are more complex need further research.Keywords: 3D shapes, architecture, geometrical features, space perception, walk-in models
Procedia PDF Downloads 2281655 Data Confidentiality in Public Cloud: A Method for Inclusion of ID-PKC Schemes in OpenStack Cloud
Authors: N. Nalini, Bhanu Prakash Gopularam
Abstract:
The term data security refers to the degree of resistance or protection given to information from unintended or unauthorized access. The core principles of information security are the confidentiality, integrity and availability, also referred as CIA triad. Cloud computing services are classified as SaaS, IaaS and PaaS services. With cloud adoption the confidential enterprise data are moved from organization premises to untrusted public network and due to this the attack surface has increased manifold. Several cloud computing platforms like OpenStack, Eucalyptus, Amazon EC2 offer users to build and configure public, hybrid and private clouds. While the traditional encryption based on PKI infrastructure still works in cloud scenario, the management of public-private keys and trust certificates is difficult. The Identity based Public Key Cryptography (also referred as ID-PKC) overcomes this problem by using publicly identifiable information for generating the keys and works well with decentralized systems. The users can exchange information securely without having to manage any trust information. Another advantage is that access control (role based access control policy) information can be embedded into data unlike in PKI where it is handled by separate component or system. In OpenStack cloud platform the keystone service acts as identity service for authentication and authorization and has support for public key infrastructure for auto services. In this paper, we explain OpenStack security architecture and evaluate the PKI infrastructure piece for data confidentiality. We provide method to integrate ID-PKC schemes for securing data while in transit and stored and explain the key measures for safe guarding data against security attacks. The proposed approach uses JPBC crypto library for key-pair generation based on IEEE P1636.3 standard and secure communication to other cloud services.Keywords: data confidentiality, identity based cryptography, secure communication, open stack key stone, token scoping
Procedia PDF Downloads 3841654 Development of a Microfluidic Device for Low-Volume Sample Lysis
Authors: Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
Abstract:
We developed a microchip device that uses surface acoustic waves for rapid lysis of low level of cell samples. The device incorporates sharp-edge glass microparticles for improved performance. We optimized the lysis conditions for high efficiency and evaluated the device's feasibility for point-of-care applications. The microchip contains a 13-finger pair interdigital transducer with a 30-degree focused angle. It generates high-intensity acoustic beams that converge 6 mm away. The microchip operates at a frequency of 16 MHz, exciting Rayleigh waves with a 250 µm wavelength on the LiNbO3 substrate. Cell lysis occurs when Candida albicans cells and glass particles are placed within the focal area. The high-intensity surface acoustic waves induce centrifugal forces on the cells and glass particles, resulting in cell lysis through lateral forces from the sharp-edge glass particles. We conducted 42 pilot cell lysis experiments to optimize the surface acoustic wave-induced streaming. We varied electrical power, droplet volume, glass particle size, concentration, and lysis time. A regression machine-learning model determined the impact of each parameter on lysis efficiency. Based on these findings, we predicted optimal conditions: electrical signal of 2.5 W, sample volume of 20 µl, glass particle size below 10 µm, concentration of 0.2 µg, and a 5-minute lysis period. Downstream analysis successfully amplified a DNA target fragment directly from the lysate. The study presents an efficient microchip-based cell lysis method employing acoustic streaming and microparticle collisions within microdroplets. Integration of a surface acoustic wave-based lysis chip with an isothermal amplification method enables swift point-of-care applications.Keywords: cell lysis, surface acoustic wave, micro-glass particle, droplet
Procedia PDF Downloads 791653 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier
Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš
Abstract:
Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.Keywords: hydrogen, ammonia, catalysis, modelling, kinetics
Procedia PDF Downloads 691652 Renewable Energy in Morocco: Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq, R. El Bachtiri
Abstract:
Renewable energies have a major importance of Morocco's new energy strategy. The geographical location of the Kingdom promotes the development of the use of solar energy. The use of this energy reduces the dependence on imports of primary energy, meets the growing demand for water and electricity in remote areas encourages the deployment of a local industry in the renewable energy sector and Minimize carbon emissions. Indeed, given the importance of the radiation intensity received and the duration of the sunshine, the country can cover some of its solar energy needs. The use of solar energy to pump water is one of the most promising application, this technique represents a solution wherever the grid does not exist. In this paper, we will present a presentation of photovoltaic pumping system components, and the important solar pumping projects installed in Morocco to supply water from remote area.Keywords: PV pumping system, Morocco, PV panel, renewable energy
Procedia PDF Downloads 4981651 Bonding Characteristics Between FRP and Concrete Substrates
Authors: Houssam A. Toutanji, Meng Han
Abstract:
This study focuses on the development of a fracture mechanics based-model that predicts the debonding behavior of FRP strengthened RC beams. In this study, a database includes 351 concrete prisms bonded with FRP plates tested in single and double shear were prepared. The existing fracture-mechanics-based models are applied to this database. Unfortunately the properties of adhesive layer, especially a soft adhesive layer, used on the specimens in the existing studies were not always able to found. Thus, the new model’s proposal was based on fifteen newly conducted pullout tests and twenty four data selected from two independent existing studies with the application of a soft adhesive layers and the availability of adhesive properties.Keywords: carbon fiber composite materials, interface response, fracture characteristics, maximum shear stress, ultimate transferable load
Procedia PDF Downloads 2691650 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes
Authors: Anna Romanova, Morteza A. Alani
Abstract:
Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid
Procedia PDF Downloads 3071649 Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone
Authors: Kwon Eunhee, Park Dongcheon, Jung Jaemin
Abstract:
In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder.Keywords: waste cementitious powder, fine aggregate powder, CO2 emission, decarbonation reaction, calcining process
Procedia PDF Downloads 4901648 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 3621647 Rebuilding Christchurch's Infrastructure: An Analysis of Political Mismanagement
Authors: Hugh Byrd, Steve Matthewnan
Abstract:
The devastation of the city centre of Christchurch, New Zealand, after the 2010 and 2011 earthquakes presented an opportunity to rebuild infrastructure in a coordinated and efficient manner to allow for a city that was energy efficient, low carbon, resilient and provided both energy security and justice. The research described in this paper records the processes taken to attempt to rebuild the energy infrastructure. The story is one of political decisions overriding appropriate technology and ultimately is a lesson in how not to handle the implementation of post-disaster energy infrastructure. Lack of clarity in decision making by central government and then not pursuing consultant’s recommendations led to a scheme that was effectively abandoned in 2016 and described as ‘a total failure’. The paper records the critical events that occurred and explains why the proposed energy infrastructure was both politically and technologically inappropriate.Keywords: energy infrastructure, policy and governance, post-disaster rebuilding
Procedia PDF Downloads 1721646 Insect Manure (Frass) as a Complementary Fertilizer to Enhance Soil Mineralization Function: Application to Cranberry and Field Crops
Authors: Joël Passicousset, David Gilbert, Chloé Chervier-Legourd, Emmanuel Caron-Garant, Didier Labarre
Abstract:
Living soil agriculture tries to reconciliate food production while improving soil health, soil biodiversity, soil fertility and more generally attenuating the inherent environmental drawbacks induced by modern agriculture. Using appropriate organic materials as soil amendments has a role to play in the aim of increasing the soil organic matter, improving soil fertility, sequestering carbon, and diminishing the dependence on both mineral fertilizer and pesticides. Insect farming consists in producing insects that can be used as a rich-in-protein and entomo-based food. Usually, detritivores are chosen, thus they can be fed with food wastes, which contributes to circular economy while producing low-carbon food. This process also produces frass, made of insect feces, exuvial material, and non-digested fibrous material, that have valuable fertilizer and biostimulation properties. But frass, used as a sole fertilizer on a crop may be not completely adequate for plants’ needs. This is why this project considers black soldier fly (termed BSF, one of the three main insect species grown commercially) frass as a complementary fertilizer, both in organic and in conventional contexts. Three kinds of experiments are made to understand the behaviour of fertilizer treatments based on frass incorporation. Lab-scale mineralization experiments suggest that BSF frass alone mineralizes more slowly than chicken manure alone (CM), but at a ratio of 90% CM-10% BSF frass, the mineralization rate of the mixture is higher than both frass and CM individually. For example, in the 7 days following the fertilization with same nitrogen amount introduced among treatments, around 80% of the nitrogen content supplied through 90% CM-10% BSF frass fertilization is present in the soil under mineral forms, compared to roughly 60% for commercial CM fertilization and 45% with BSF-frass. This suggests that BSF frass contains a more recalcitrant form of organic nitrogen than CM, but also that BSF frass has a highly active microbiota that can increase CM mineralization rate. Consequently, when progressive mineralization is needed, pure BSF-frass may be a consistent option from an agronomic aspect whereas, for specific crops that require spikes of readily available nitrogen sources (like cranberry), fast release 90CM-10BSF frass biofertilizer are more appropriate. Field experiments on cranberry suggests that, indeed, 90CM-10BSF frass is a potent candidate for organic cranberry production, as currently, organic growers rely solely on CM, whose mineralization kinetics are known to imperfectly match plant’s needs, which is known to be a major reason that sustains the current yield gap between conventional and organic cranberry sectors.Keywords: soil mineralization, biofertilizer, BSF-frass, chicken manure, soil functions, nitrogen, soil microbiota
Procedia PDF Downloads 701645 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)
Procedia PDF Downloads 1081644 Syntheses of Anionic Poly(urethanes) with Imidazolium, Phosphonium, and Ammonium as Counter-cations and Their Evaluation for CO2 Separation
Authors: Franciele L. Bernard, Felipe Dalla Vecchia, Barbara B. Polesso, Jose A. Donato, Marcus Seferin, Rosane Ligabue, Jailton F. do Nascimento, Sandra Einloft
Abstract:
The increasing level of carbon dioxide concentration in the atmosphere related to fossil fuels processing and utilization are contributing to global warming phenomena considerably. Carbon capture and storage (CCS) technologies appear as one of the key technologies to reduce CO2 emissions mitigating the effects of climate change. Absorption using amines solutions as solvents have been extensively studied and used in industry for decades. However, solvent degradation and equipment corrosion are two of the main problems in this process. Poly (ionic liquid) (PIL) is considered as a promising material for CCS technology, potentially more environmentally friendly and lesser energy demanding than traditional material. PILs possess a unique combination of ionic liquids (ILs) features, such as affinity for CO2, thermal and chemical stability and adjustable properties, coupled with the intrinsic properties of the polymer. This study investigated new Poly (ionic liquid) (PIL) based on polyurethanes with different ionic liquids cations and its potential for CO2 capture. The PILs were synthesized by the addition of diisocyante to a difunctional polyol, followed by an exchange reaction with the ionic Liquids 1-butyl-3-methylimidazolium chloride (BMIM Cl); tetrabutylammonium bromide (TBAB) and tetrabutylphosphonium bromide (TBPB). These materials were characterized by Fourier transform infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance (1H-NMR), Atomic force microscopy (AFM), Tensile strength analysis, Field emission scanning electron microscopy (FESEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC). The PILs CO2 sorption capacity were gravimetrically assessed in a Magnetic Suspension Balance (MSB). It was found that the ionic liquids cation influences in the compounds properties as well as in the CO2 sorption. The best result for CO2 sorption (123 mgCO2/g at 30 bar) was obtained for the PIL (PUPT-TBA). The higher CO2 sorption in PUPT-TBA is probably linked to the fact that the tetraalkylammonium cation having a higher positive density charge can have a stronger interaction with CO2, while the imidazolium charge is delocalized. The comparative CO2 sorption values of the PUPT-TBA with different ionic liquids showed that this material has greater capacity for capturing CO2 when compared to the ILs even at higher temperature. This behavior highlights the importance of this study, as the poly (urethane) based PILs are cheap and versatile materials.Keywords: capture, CO2, ionic liquids, ionic poly(urethane)
Procedia PDF Downloads 2341643 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic
Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun
Abstract:
III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio
Procedia PDF Downloads 811642 Analysing Time Series for a Forecasting Model to the Dynamics of Aedes Aegypti Population Size
Authors: Flavia Cordeiro, Fabio Silva, Alvaro Eiras, Jose Luiz Acebal
Abstract:
Aedes aegypti is present in the tropical and subtropical regions of the world and is a vector of several diseases such as dengue fever, yellow fever, chikungunya, zika etc. The growth in the number of arboviruses cases in the last decades became a matter of great concern worldwide. Meteorological factors like mean temperature and precipitation are known to influence the infestation by the species through effects on physiology and ecology, altering the fecundity, mortality, lifespan, dispersion behaviour and abundance of the vector. Models able to describe the dynamics of the vector population size should then take into account the meteorological variables. The relationship between meteorological factors and the population dynamics of Ae. aegypti adult females are studied to provide a good set of predictors to model the dynamics of the mosquito population size. The time-series data of capture of adult females of a public health surveillance program from the city of Lavras, MG, Brazil had its association with precipitation, humidity and temperature analysed through a set of statistical methods for time series analysis commonly adopted in Signal Processing, Information Theory and Neuroscience. Cross-correlation, multicollinearity test and whitened cross-correlation were applied to determine in which time lags would occur the influence of meteorological variables on the dynamics of the mosquito abundance. Among the findings, the studied case indicated strong collinearity between humidity and precipitation, and precipitation was selected to form a pair of descriptors together with temperature. In the techniques used, there were observed significant associations between infestation indicators and both temperature and precipitation in short, mid and long terms, evincing that those variables should be considered in entomological models and as public health indicators. A descriptive model used to test the results exhibits a strong correlation to data.Keywords: Aedes aegypti, cross-correlation, multicollinearity, meteorological variables
Procedia PDF Downloads 1801641 Development of Electronic Services in Georgia: Analysis of Current Situation
Authors: Dato Surmanidze, Dato Antadze, Tornike Partenadze
Abstract:
Public online services in Georgia are concentrated on main target segments: public administration, business, population, non-governmental and other interested organizations. Therefore, the strategy of digital Georgia is focused on providing G2C, G2B/B2G, G2NGO and G2G services. In G2C framework sophisticated and high-technological online services have been developed in order to provide passports, identity cards, documentations concerning residence and civil acts (birth, marriage, divorce, child adoption, change of name and surname, death, etc) as well as other services. Websites like my.gov.ge and sda.gov.ge have distance services like electronic application, processing and decision making. In line with international standards automatic services like electronic tenders, product catalogues, invoices and payment have been developed. This creates better investment climate for foreign companies in Georgia in the framework of G2B politics. The website mybusiness.gov.ge creates better conditions for local business. Among electronic services is e-NRMS (electronic system for national resource management) which was introduced by the Ministry of Finance of Georgia. The system was created in order to ensure management of national resources by state and business organizations. It is integrated with bank services and provides G2C, G2B and B2G representatives with electronic services. Also a portal meteo.gov.ge was created which gives electronic services concerning air, geological, environmental and pollution issues. Also worknet.gov.ge should be mentioned which is an electronic hub of information management for employers and employees. The information portal of labor market will facilitate receipt of information, its analysis and delivery to interested people like employers and employees. However, nowadays it’s been two years that only employees portal is activated. Therefore, awareness about the portal, its competitiveness and success is undermined.Keywords: electronic services, public administration, information technology, information society
Procedia PDF Downloads 2681640 Quantifying Wave Attenuation over an Eroding Marsh through Numerical Modeling
Authors: Donald G. Danmeier, Gian Marco Pizzo, Matthew Brennan
Abstract:
Although wetlands have been proposed as a green alternative to manage coastal flood hazards because of their capacity to adapt to sea level rise and provision of multiple ecological and social co-benefits, they are often overlooked due to challenges in quantifying the uncertainty and naturally, variability of these systems. This objective of this study was to quantify wave attenuation provided by a natural marsh surrounding a large oil refinery along the US Gulf Coast that has experienced steady erosion along the shoreward edge. The vegetation module of the SWAN was activated and coupled with a hydrodynamic model (DELFT3D) to capture two-way interactions between the changing water level and wavefield over the course of a storm event. Since the marsh response to relative sea level rise is difficult to predict, a range of future marsh morphologies is explored. Numerical results were examined to determine the amount of wave attenuation as a function of marsh extent and the relative contributions from white-capping, depth-limited wave breaking, bottom friction, and flexing of vegetation. In addition to the coupled DELFT3D-SWAN modeling of a storm event, an uncoupled SWAN-VEG model was applied to a simplified bathymetry to explore a larger experimental design space. The wave modeling revealed that the rate of wave attenuation reduces for higher surge but was still significant over a wide range of water levels and outboard wave heights. The results also provide insights to the minimum marsh extent required to fully realize the potential wave attenuation so the changing coastal hazards can be managed.Keywords: green infrastructure, wave attenuation, wave modeling, wetland
Procedia PDF Downloads 1321639 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies
Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan
Abstract:
Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.Keywords: energy models, environmental policy instruments, mitigating CO2 emission, economic wide impact
Procedia PDF Downloads 5241638 Developing an Edutainment Game for Children with ADHD Based on SAwD and VCIA Model
Authors: Bruno Gontijo Batista
Abstract:
This paper analyzes how the Socially Aware Design (SAwD) and the Value-oriented and Culturally Informed Approach (VCIA) design model can be used to develop an edutainment game for children with Attention Deficit Hyperactivity Disorder (ADHD). The SAwD approach seeks a design that considers new dimensions in human-computer interaction, such as culture, aesthetics, emotional and social aspects of the user's everyday experience. From this perspective, the game development was VCIA model-based, including the users in the design process through participatory methodologies, considering their behavioral patterns, culture, and values. This is because values, beliefs, and behavioral patterns influence how technology is understood and used and the way it impacts people's lives. This model can be applied at different stages of design, which goes from explaining the problem and organizing the requirements to the evaluation of the prototype and the final solution. Thus, this paper aims to understand how this model can be used in the development of an edutainment game for children with ADHD. In the area of education and learning, children with ADHD have difficulties both in behavior and in school performance, as they are easily distracted, which is reflected both in classes and on tests. Therefore, they must perform tasks that are exciting or interesting for them, once the pleasure center in the brain is activated, it reinforces the center of attention, leaving the child more relaxed and focused. In this context, serious games have been used as part of the treatment of ADHD in children aiming to improve focus and attention, stimulate concentration, as well as be a tool for improving learning in areas such as math and reading, combining education and entertainment (edutainment). Thereby, as a result of the research, it was developed, in a participatory way, applying the VCIA model, an edutainment game prototype, for a mobile platform, for children between 8 and 12 years old.Keywords: ADHD, edutainment, SAwD, VCIA
Procedia PDF Downloads 1901637 Energy Atlas: Geographic Information Systems-Based Energy Analysis and Planning Tool
Authors: Katarina Pogacnik, Ursa Zakrajsek, Nejc Sirk, Ziga Lampret
Abstract:
Due to an increase in living standards along with global population growth and a trend of urbanization, municipalities and regions are faced with an ever rising energy demand. A challenge has arisen for cities around the world to modify the energy supply chain in order to reduce its consumption and CO₂ emissions. The aim of our work is the development of a computational-analytical platform for dynamic support in decision-making and the determination of economic and technical indicators of energy efficiency in a smart city, named Energy Atlas. Similar products in this field focuse on a narrower approach, whereas in order to achieve its aim, this platform encompasses a wider spectrum of beneficial and important information for energy planning on a local or regional scale. GIS based interactive maps provide an extensive database on the potential, use and supply of energy and renewable energy sources along with climate, transport and spatial data of the selected municipality. Beneficiaries of Energy atlas are local communities, companies, investors, contractors as well as residents. The Energy Atlas platform consists of three modules named E-Planning, E-Indicators and E-Cooperation. The E-Planning module is a comprehensive data service, which represents a support towards optimal decision-making and offers a sum of solutions and feasibility of measures and their effects in the area of efficient use of energy and renewable energy sources. The E-Indicators module identifies, collects and develops optimal data and key performance indicators and develops an analytical application service for dynamic support in managing a smart city in regards to energy use and sustainable environment. In order to support cooperation and direct involvement of citizens of the smart city, the E-cooperation is developed with the purpose of integrating the interdisciplinary and sociological aspects of energy end-users. Interaction of all the above-described modules contributes to regional development because it enables for a precise assessment of the current situation, strategic planning, detection of potential future difficulties and also the possibility of public involvement in decision-making. From the implementation of the technology in Slovenian municipalities of Ljubljana, Piran, and Novo mesto, there is evidence to suggest that the set goals are to be achieved to a great extent. Such thorough urban energy planning tool is viewed as an important piece of the puzzle towards achieving a low-carbon society, circular economy and therefore, sustainable society.Keywords: circular economy, energy atlas, energy management, energy planning, low-carbon society
Procedia PDF Downloads 3051636 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 1441635 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device
Authors: M. Hoseinnezhad, K. Gharanjig
Abstract:
Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.Keywords: dye-sensitized solar cells, indoline dye, nanostructure, oxidation potential, solar energy
Procedia PDF Downloads 1931634 Acupoint Injection of High Concentration of Glucose Attenuates Mice Chronic Pain and Depression Comorbidity
Authors: Chanya Inprasit, Yi-Wen Lin
Abstract:
Inflammation causes changes of peripheral and central nervous system properties, affecting both neuronal and non-neuronal cells, resulting in inflammatory pain. Acupoint injection (AI) was developed in the 1950s and has been widely used for relieving pain. It is an acupoint-stimulating technique that utilizes anatomically based meridians derived from Chinese medicine theory. AI has been accepted as an effective treatment and is thought to display superior results when compared to traditional acupuncture methods. However, the mechanism of AI needs to be ratified by more scientific evidence in order to support the theory and its therapeutic development. In this study, we explored the effect of AI on the comorbidity of chronic pain and depression. Mice hindpaw was injected by complete Freund’s adjuvant (CFA) to induce the condition of chronic pain. Measurements of mechanical and thermal hyperalgesia and depression-like behavior were analyzed. The results indicated a positive tendency to AI treatment. The comorbidity of chronic pain and depression was investigated with relation to transient receptor potential V1 (TRPV1) mechanism through the use of TRPV1 gene deletion. The expression of nociceptors such as voltage-gated sodium channels (Navs) or TRPV1, was significantly down-regulated by AI. The expression of inflammation-activated molecules: astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, and related kinases, were reversed by AI in both the peripheral and central nervous system. Taken together, these data provided a detailed molecular mechanism of AI-induced analgesia and anti-inflammatory properties. This finding may be utilized for clinical practice to treat chronic pain and depression comorbidity.Keywords: inflammatory pain, acupoint injection, TRPV1, GFAP, S100B
Procedia PDF Downloads 1491633 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center
Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael
Abstract:
Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency
Procedia PDF Downloads 331632 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter
Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba
Abstract:
In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.Keywords: diesel engine, helicopter, simulation, environmental impact
Procedia PDF Downloads 5691631 High Performance Nanomaterials for Sustainable and Modern Façade Application
Authors: Farrin Ghorbanalavi, Nihal Arıoğlu
Abstract:
The concept of enhancing mechanical /thermal/physical properties of architectural materials is being practiced for over five decades. In comparison with other approaches, the current nanotechnology era equally attracted the structural scientists, engineers, and industries. It simply promises that using building blocks with dimensions in the nano size range makes it possible to design and develop new multi-functional materials. This research focuses on understanding the effects of nanotechnology on the building facade and new facade concepts based on the new possibilities of nanotechnology. Mentioned factors are very prosperous for the comfort as well as sustainability of the building itself. Furthermore, the study suggests that the potential for energy conservation and reduced waste, toxicity, non-renewable resource consumption, and carbon emissions through the architectural applications of nanotechnologies significant. More clearly, it provides us the information about what does the future hold for surface structures.Keywords: sustainable, nano materials, façade, energy efficiency
Procedia PDF Downloads 5571630 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution
Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy
Abstract:
Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution
Procedia PDF Downloads 97