Search results for: communicable diseases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2667

Search results for: communicable diseases

2487 Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Maria J. Alves, Sofia Cunha

Abstract:

Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature.

Keywords: human health, risk assessment, risk management, vector-borne diseases

Procedia PDF Downloads 418
2486 Investigation of Diseases and Enemies of Bees of Breeding Apis mellifera intermissa (Buttel-Reepen, 1906)

Authors: S. Zenia, L. Bitta, O. Bouhamam, H. Brines, M. Boudriaa, F. Haddadj, F. Marniche, A. Milla, H. Saadi, A. Smai

Abstract:

The bee Apis mellifera intermissa is a major social insect, in addition to its honey production, it is a pillar of our biodiversity. Several living organisms can come into contact with it: bacteria, viruses, protozoa, fungi, mites, and insects. In Algeria, many beekeepers have reported unusual mortality of local bees, loss of foragers and significant losses of their livestock. Despite the presence of a varied honey-bearing flora and a favourable Mediterranean climate, honey production remains low. This phenomenon can be attributed to the excess winter mortality, but also to the increasing difficulties that beekeepers face in maintaining healthy bee colonies, particularly bee diseases and their transmission facilitated by trade and beekeeping practices. Our survey is based on a questionnaire composed of several parts. The results obtained show that the disease that most affects bees according to beekeepers is varroa mite with 93% followed by fungi with 26%. The most replied enemy of bees is the false ringworm with 73%, followed by the bee-eater with 63%. Our goal is to determine the causes of this low production in two areas: Bejaia and Tizi-Ouzou.

Keywords: diseases, Apis mellifera L., varroa, European foulbrood

Procedia PDF Downloads 161
2485 An Investigation of the Compliance of Kermanian College Students' Diet with Who/Fao Nutrition Targets

Authors: Farideh Doostan, Sahar Mohseni Taklloo, Mohammad Nosrati

Abstract:

Chronic diseases are non-communicable and largely preventable by lifestyle changes including healthy diet consumption. They are the most common cause of death in the world and projected to increase by 15% globally between 2010 and 2020.The hazardous effects of behavioral and dietary risk factors on chronic disease have been established in prospective cohort studies and randomized trials. Because of some changes occur in college students’ lifestyle, assessment of dietary risk factors is important in these populations. Objective: This research was the first study that conducted to evaluate dietary intakes of Kermanian college students with WHO/FAO nutritional objectives. Material and Methods: In this descriptive cross-sectional study, 229 healthy college students of health faculty in Kerman University of Medical Sciences that do not intake any medical drugs were recruited using multistage sampling in 2013.Usual dietary intake was collected using a valid Food Frequency Questionnaire (FFQ) and diet quality was calculated based on WHO nutrient goals. To analysis of data between two groups, independent sample t. test and man whitney were applied. Results: Two hundred and twenty-nine college students; 151 females (65.9%) and 78 males (34.1%), the mean age of 21.9 years were studied. The mean of the Body Mass Index (Kg/m2) and Waist Circumference (cm) in males were 22.34 ±3.52 and 80.76±11.16 and in females were 21.19±2.62 and 73.67±7.65 respectively. Mean of daily cholesterol intake in males was significantly more than females (305±101 VS 268±98; P=0.008) and more than WHO/FAO recommendation (less than 300 mg/day). The mean of daily sodium intake in men and women were 10.4±1 and 10.9±5.3 respectively. These amounts were more than WHO/FAO recommendation (less than 2g/day). In addition, women were consumed fruit and vegetables more than men (839±336 VS 638±281; p ‹ 0.001) and these amounts were more than WHO/FAO recommendation (more than 400g/day) in both groups. Other intake indices were in the range of WHO/FAO recommendations, So that Percent of calories intake from total fat, saturated fatty acids, polyunsaturated fatty acids and added sugar were in compliance with WHO/FAO recommendations. Conclusion: Cholesterol intake in men and sodium intake in all participants were more than WHO/FAO recommendation. These dietary components are the most important causes of cardiovascular disease (one of the main causes of death in our population). These results indicated that proper nutritional education and interventions are needed in this population.

Keywords: college students, food intake, WHO /FAO nutrient intake goals, Kerman

Procedia PDF Downloads 404
2484 Whole Exome Sequencing Data Analysis of Rare Diseases: Non-Coding Variants and Copy Number Variations

Authors: S. Fahiminiya, J. Nadaf, F. Rauch, L. Jerome-Majewska, J. Majewski

Abstract:

Background: Sequencing of protein coding regions of human genome (Whole Exome Sequencing; WES), has demonstrated a great success in the identification of causal mutations for several rare genetic disorders in human. Generally, most of WES studies have focused on rare variants in coding exons and splicing-sites where missense substitutions lead to the alternation of protein product. Although focusing on this category of variants has revealed the mystery behind many inherited genetic diseases in recent years, a subset of them remained still inconclusive. Here, we present the result of our WES studies where analyzing only rare variants in coding regions was not conclusive but further investigation revealed the involvement of non-coding variants and copy number variations (CNV) in etiology of the diseases. Methods: Whole exome sequencing was performed using our standard protocols at Genome Quebec Innovation Center, Montreal, Canada. All bioinformatics analyses were done using in-house WES pipeline. Results: To date, we successfully identified several disease causing mutations within gene coding regions (e.g. SCARF2: Van den Ende-Gupta syndrome and SNAP29: 22q11.2 deletion syndrome) by using WES. In addition, we showed that variants in non-coding regions and CNV have also important value and should not be ignored and/or filtered out along the way of bioinformatics analysis on WES data. For instance, in patients with osteogenesis imperfecta type V and in patients with glucocorticoid deficiency, we identified variants in 5'UTR, resulting in the production of longer or truncating non-functional proteins. Furthermore, CNVs were identified as the main cause of the diseases in patients with metaphyseal dysplasia with maxillary hypoplasia and brachydactyly and in patients with osteogenesis imperfecta type VII. Conclusions: Our study highlights the importance of considering non-coding variants and CNVs during interpretation of WES data, as they can be the only cause of disease under investigation.

Keywords: whole exome sequencing data, non-coding variants, copy number variations, rare diseases

Procedia PDF Downloads 419
2483 Relationship Between Health Coverage and Emergency Disease Burden

Authors: Karim Hajjar, Luis Lillo, Diego Martinez, Manuel Hermosilla, Nicholas Risko

Abstract:

Objectives: This study examines the relationship between universal health coverage (UCH) and the burden of emergency diseases at a global level. Methods: Data on Disability-Adjusted Life Years (DALYs) from emergency conditions were extracted from the Institute for Health Metrics and Evaluation (IHME) database for the years 2015 and 2019. Data on UHC, measured using two variables, 1) coverage of essential health services and 2) proportion of population spending more than 10% of household income on out-of-pocket health care expenditure, was extracted from the World Bank Database for years preceding our outcome of interest. Linear regression was performed, analyzing the effect of the UHC variables on the DALYs of emergency diseases, controlling for other variables. Results: A total of 133 countries were included. 44.4% of the analyzed countries had coverage of essential health services index of at least 70/100, and 35.3% had at least 10% of their population spend greater than 10% of their household income on healthcare. For every point increase in the coverage of essential health services index, there was a 13-point reduction in DALYs of emergency medical diseases (95% CI -16, -11). Conversely, for every percent decrease in the population with large household expenditure on healthcare, there was a 0.48 increase in DALYs of emergency medical diseases (95% CI -5.6, 4.7). Conclusions: After adjusting for multiple variables, an increase in coverage of essential health services was significantly associated with improvement in DALYs for emergency conditions. There was, however, no association between catastrophic health expenditure and DALYs.

Keywords: emergency medicine, universal healthcare, global health, health economics

Procedia PDF Downloads 92
2482 The Conception of the Students about the Presence of Mental Illness at School

Authors: Aline Giardin, Maria Rosa Chitolina, Maria Catarina Zanini

Abstract:

In this paper, we analyze the conceptions of high school students about mental health issues, and discuss the creation of mental basic health programs in schools. We base our findings in a quantitative survey carried out by us with 156 high school students of CTISM (Colégio Técnico Industrial de Santa Maria) school, located in Santa Maria city, Brazil. We have found that: (a) 28 students relate the subject ‘mental health’ with psychiatric hospitals and lunatic asylums; (b) 28 students have relatives affected by mental diseases; (c) 76 students believe that mental patients, if treated, can live a healthy life; (d) depression, schizophrenia and bipolar disorder are the most cited diseases; (e) 84 students have contact with mental patients, but know nothing about the disease; (f) 123 students have never been instructed about mental diseases while in the school; and (g) 135 students think that a mental health program would be important in the school. We argue that these numbers reflect a vision of mental health that can be related to the reductionist education still present in schools and to the lack of integration between health professionals, sciences teachers, and students. Furthermore, this vision can also be related to a stigmatization process, which interferes with the interactions and with the representations regarding mental disorders and mental patients in society.

Keywords: mental health, schools, mental illness, conception

Procedia PDF Downloads 469
2481 Identifying the Barriers to Institutionalizing a One Health Concept in Responding to Zoonotic Diseases in South Asia

Authors: Rojan Dahal

Abstract:

One Health refers to a collaborative effort between multiple disciplines - locally, nationally, and globally - to attain optimal health. Although there were unprecedented intersectoral alliances between the animal and human health sectors during the avian influenza outbreak, there are different views and perceptions concerning institutionalizing One Health in South Asia. It is likely a structural barrier between the relevant professionals working in different entities or ministries when it comes to collaborating on One Health actions regarding zoonotic diseases. Politicians and the public will likely need to invest large amounts of money, demonstrate political will, and understand how One Health works to overcome these barriers. One Health might be hard to invest in South Asian countries, where the benefits are based primarily on models and projections and where numerous issues related to development and health need urgent attention. The other potential barrier to enabling the One Health concept in responding to zoonotic diseases is a failure to represent One Health in zoonotic disease control and prevention measures in the national health policy, which is a critical component of institutionalizing the One Health concept. One Health cannot be institutionalized without acknowledging the linkages between animal, human, and environmental sectors in dealing with zoonotic diseases. Efforts have been made in the past to prepare a preparedness plan for One Health implementation, but little has been done to establish a policy environment to institutionalize One Health. It is often assumed that health policy refers specifically to medical care issues and health care services. When drafting, reviewing, and redrafting the policy, it is important to engage a wide range of stakeholders. One Health institutionalization may also be hindered by the interplay between One Health professionals and bureaucratic inertia in defining the priorities of diseases due to competing interests on limited budgets. There is a possibility that policymakers do not recognize the importance of veterinary professionals in preventing human diseases originating in animals. Compared to veterinary medicine, the human health sector has produced most of the investment and research outputs related to zoonotic diseases. The public health profession may consider itself superior to the veterinary profession. Zoonotic diseases might not be recognized as threats to human health, impeding integrated policies. The effort of One Health institutionalization remained only among the donor agencies and multi-sectoral organizations. There is a need for strong political will and state capacity to overcome the existing institutional, financial, and professional barriers for its effective implementation. There is a need to assess the structural challenges, policy challenges, and the attitude of the professional working in the multiple disciplines related to One Health. Limited research has been conducted to identify the reasons behind the barriers to institutionalizing the One Health concept in South Asia. Institutionalizing One Health in responding to zoonotic diseases breaks down silos and integrates animals, humans, and the environment.

Keywords: one health, institutionalization, South Asia, institutionalizations

Procedia PDF Downloads 98
2480 Human Microbiome Hidden Association with Chronic and Autoimmune Diseases

Authors: Elmira Davasaz Tabrizi, Müşteba Sevil, Ercan Arican

Abstract:

In recent decades, there has been a sharp increase in the prevalence of several unrelated chronic diseases. The use of long-term antibiotics for chronic illnesses is increasing. The antibiotic resistance occurrence and its relationship with host microbiomes are still unclear. Properties of the identifying antibodies have been the focus of chronic disease research, such as prostatitis or autoimmune. The immune system is made up of a complicated but well-organized network of cell types that constantly monitor and maintain their surroundings. The regulated homeostatic interaction between immune system cells and their surrounding environment shapes the microbial flora. Researchers believe that the disappearance of special bacterial species from our ancestral microbiota might have altered the body flora that can cause a rise in disease during the human life span. This unpleasant pattern demonstrates the importance of focusing on discovering and revealing the root causes behind the disappearance or alteration of our microbiota. In this review, we gathered the results of some studies that reveal changes in the diversity and quantity of microorganisms that may affect chronic and autoimmune diseases. Additionally, a Ph.D. thesis that is still in process as Metagenomic studies in chronic prostatitis samples is mentioned.

Keywords: metagenomic, autoimmune, prostatitis, microbiome

Procedia PDF Downloads 96
2479 A Review of Type 2 Diabetes and Diabetes-Related Cardiovascular Disease in Zambia

Authors: Mwenya Mubanga, Sula Mazimba

Abstract:

Background: In Zambia, much of the focus on nutrition and health has been on reducing micronutrient deficiencies, wasting and underweight malnutrition and not on the rising global projections of trends in obesity and type 2 diabetes. The aim of this review was to identify and collate studies on the prevalence of obesity, diabetes and diabetes-related cardiovascular disease conducted in Zambia, to summarize their findings and to identify areas that need further research. Methods: The Medical Literature Analysis and Retrieval System (MEDLINE) database was searched for peer-reviewed articles on the prevalence of, and factors associated with obesity, type 2 diabetes, and diabetes-related cardiovascular disease amongst Zambian residents using a combination of search terms. The period of search was from 1 January 2000 to 31 December 2016. We expanded the search terms to include all possible synonyms and spellings obtained in the search strategy. Additionally, we performed a manual search for other articles and references of peer-reviewed articles. Results: In Zambia, the current prevalence of Obesity and Type 2 diabetes is estimated at 13%-16% and 2.0 – 3.0% respectively. Risk factors such as the adoption of western dietary habits, the social stigmatization associated with rapid weight loss due to Tuberculosis and/ or the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and rapid urbanization have all been blamed for fueling the increased risk of obesity and type 2 diabetes. However, unlike traditional Western populations, those with no formal education were less likely to be obese than those who attained secondary or tertiary level education. Approximately 30% of those surveyed were unaware of their diabetes diagnosis and more than 60% were not on treatment despite a known diabetic status. Socio-demographic factors such as older age, female sex, urban dwelling, lack of tobacco use and marital status were associated with an increased risk of obesity, impaired glucose tolerance and type 2 diabetes. We were unable to identify studies that specifically looked at diabetes-related cardiovascular disease. Conclusion: Although the prevalence of Obesity and Type 2 diabetes in Zambia appears low, more representative studies focusing on parts of the country outside of the main industrial zone need to be conducted. There also needs to be research on diabetes-related cardiovascular disease. National surveillance, monitoring and evaluation on all non-communicable diseases need to be prioritized and policies that address underweight, obesity and type 2 diabetes developed.

Keywords: type 2 diabetes, Zambia, obesity, cardiovascular disease

Procedia PDF Downloads 251
2478 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 380
2477 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 231
2476 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases

Authors: Peter Fedichev

Abstract:

We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.

Keywords: aging, longevity, biomarkers, senescence

Procedia PDF Downloads 274
2475 Comparative Evaluation of Seropositivity and Patterns Distribution Rates of the Anti-Nuclear Antibodies in the Diagnosis of Four Different Autoimmune Collagen Tissue Diseases

Authors: Recep Kesli, Onur Turkyilmaz, Cengiz Demir

Abstract:

Objective: Autoimmune collagen diseases occur with the immune reactions against the body’s own cell or tissues which cause inflammation and damage the tissues and organs. In this study, it was aimed to compare seropositivity rates and patterns of the anti-nuclear antibodies (ANA) in the diagnosis of four different autoimmune collagen tissue diseases (Rheumatoid Arthritis-RA, Systemic Lupus Erythematous-SLE, Scleroderma-SSc and Sjogren Syndrome-SS) with each other. Methods: One hundred eighty-eight patients applied to different clinics in Afyon Kocatepe University ANS Practice and Research Hospital between 11.07.2014 and 14.07.2015 that thought the different collagen disease such as RA, SLE, SSc and SS have participated in the study retrospectively. All the data obtained from the patients participated in the study were evaluated according to the included criteria. The historical archives belonging to the patients have been screened, assessed in terms of ANA positivity. The obtained data was analysed by using the descriptive statistics; chi-squared, Fischer's exact test. The evaluations were performed by SPSS 20.0 version and p < 0.05 level was considered as significant. Results: Distribution rates of the totally one hundred eighty-eight patients according to the diagnosis were found as follows: 82 (43.6%) were RA, 38 (20.2%) were SLE, 22 (11.7%) were SSc, and 46 (24.5%) were SS. Distribution of ANA positivity rates according to the collagen tissue diseases were found as follows; for RA were 54 (65,9 %), for SLE were 36 (94,7 %), for SSc were 18 (81,8 %), and for SS were 43 (93,5 %). Rheumatoid arthritis should be evaluated and classified as a different class among all the other investigated three autoimmune illnesses. ANA positivity rates were found as differently higher (91.5 %) in the SLE, SSc, and SS, from the RA (65.9 %). Differences at ANA positivity rates for RA and the other three diseases were found as statistically significant (p=0.015). Conclusions: Systemic autoimmune illnesses show broad spectrum. ANA positivity was found as an important predictor marker in the diagnosis of the rheumatologic illnesses. ANA positivity should be evaluated as more valuable and sensitive a predictor diagnostic marker in the laboratory findings of the SLE, SSc, and SS according to RA.

Keywords: antinuclear antibody (ANA), rheumatoid arthritis, scleroderma, Sjogren syndrome, systemic lupus Erythemotosus

Procedia PDF Downloads 243
2474 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 377
2473 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea

Procedia PDF Downloads 134
2472 Cancer Burden and Policy Needs in the Democratic Republic of the Congo: A Descriptive Study

Authors: Jean Paul Muambangu Milambo, Peter Nyasulu, John Akudugu, Leonidas Ndayisaba, Joyce Tsoka-Gwegweni, Lebwaze Massamba Bienvenu, Mitshindo Mwambangu Chiro

Abstract:

In 2018, non-communicable diseases (NCDs) were responsible for 48% of deaths in the Democratic Republic of Congo (DRC), with cancer contributing to 5% of these deaths. There is a notable absence of cancer registries, capacity-building activities, budgets, and treatment roadmaps in the DRC. Current cancer estimates are primarily based on mathematical modeling with limited data from neighboring countries. This study aimed to assess cancer subtype prevalence in Kinshasa hospitals and compare these findings with WHO model estimates. Methods: A retrospective observational study was conducted from 2018 to 2020 at HJ Hospitals in Kinshasa. Data were collected using American Cancer Society (ACS) questionnaires and physician logs. Descriptive analysis was performed using STATA version 16 to estimate cancer burden and provide evidence-based recommendations. Results: The results from the chart review at HJ Hospitals in Kinshasa (2018-2020) indicate that out of 6,852 samples, approximately 11.16% were diagnosed with cancer. The distribution of cancer subtypes in this cohort was as follows: breast cancer (33.6%), prostate cancer (21.8%), colorectal cancer (9.6%), lymphoma (4.6%), and cervical cancer (4.4%). These figures are based on histopathological confirmation at the facility and may not fully represent the broader population due to potential selection biases related to geographic and financial accessibility to the hospital. In contrast, the World Health Organization (WHO) model estimates for cancer prevalence in the DRC show different proportions. According to WHO data, the distribution of cancer types is as follows: cervical cancer (15.9%), prostate cancer (15.3%), breast cancer (14.9%), liver cancer (6.8%), colorectal cancer (5.9%), and other cancers (41.2%) (WHO, 2020). Conclusion: The data indicate a rising cancer prevalence in DRC but highlight significant gaps in clinical, biomedical, and genetic cancer data. The establishment of a population-based cancer registry (PBCR) and a defined cancer management pathway is crucial. The current estimates are limited due to data scarcity and inconsistencies in clinical practices. There is an urgent need for multidisciplinary cancer management, integration of palliative care, and improvement in care quality based on evidence-based measures.

Keywords: cancer, risk factors, DRC, gene-environment interactions, survivors

Procedia PDF Downloads 20
2471 Economic Evaluation of Cardiac Rehabilitation Programs for Patients with Cardiovascular Diseases

Authors: Aziz Rezapour, Abdosaleh Jafari, Marziye Hadian, Elaheh Mazaheri

Abstract:

Introduction: Cardiac rehabilitation is an accurate educational and sporting program designed to help heart patients to increase their physical activities and reduce the risk factors that make their health worse and help to a healthier lifestyle so that they can return to their families and society with a better spirit. The aim of this study was to examine the cost-effectiveness and cost-utility of cardiac rehabilitation programs for patients with cardiovascular diseases. Methods: In the present review study, published articles related to cost-effectiveness and cost-utility of cardiac rehabilitation programs for patients with cardiovascular diseases within the time interval between 2004 and 2019 were searched using electronic databases. The methodological quality of the structure of articles was examined by Drummond’s standard checklist. Results: The results of reviewing studies showed that most of the studies related to the economic evaluation of cardiac rehabilitation programs in patients with cardiovascular disease were flawed in Drummond’s criteria, and only one study adhered to Drummond’s criteria. The results of the present study indicated use of cardiac rehabilitation programs in patients with cardiovascular disease was cost-effective. Conclusion: The results of this review study showed that although the results of the studies were different in terms of a number of aspects, such as the study perspective, the time horizons, and the costs of rehabilitation programs, they achieved a similar conclusion, they concluded that the use of cardiac rehabilitation programs in patients with cardiovascular diseases, leading to higher quality-adjusted life years (QALYs) and lower costs.

Keywords: economic evaluation, systematic review, cardiac rehabilitation, Drummond’s checklist

Procedia PDF Downloads 142
2470 Scope of Lasers in Periodontics

Authors: Atmaja Patel

Abstract:

Since the development of lasers in 1951, the first medical application was reported by Goldman in 1962. In 1960, T.H. Maiman produced the first Ruby laser and was used in cardiovascular surgery by McGuff in 1963. After a long time of investigations and new developments in laser technology first clinical applications were performed by Choy and Ginsburg in 1983. Introduction of the first true dental laser was in 1989. This paper is to highlight the various treatments and prevention of periodontal diseases. Lasers have become more predictable and effective form of treatment for periodontal diseases. The advantages of lasers include reduced use of anaesthesia, coagulation that yields a dry surgical field and hence better visibility, reduced need of sutures, minimal swelling and scarring, less pain and medication, faster healing and increased patient acceptance.

Keywords: lasers, periodontal surgery, diode laser, healing

Procedia PDF Downloads 319
2469 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
2468 Challenges and Pitfalls of Nutrition Labeling Policy in Iran: A Policy Analysis

Authors: Sareh Edalati, Nasrin Omidvar, Arezoo Haghighian Roudsari, Delaram Ghodsi, Azizollaah Zargaran

Abstract:

Background and aim: Improving consumer’s food choices and providing a healthy food environment by governments is one of the essential approaches to prevent non-communicable diseases and to fulfill the sustainable development goals (SDGs). The present study aimed to provide an analysis of the nutrition labeling policy as one of the main components of the healthy food environment to provide learning lessons for the country and other low and middle-income countries. Methods: Data were collected by reviewing documents and conducting semi-structured interviews with stakeholders. Respondents were selected through purposive and snowball sampling and continued until data saturation. MAXQDA software was used to manage data analysis. A deductive content analysis was used by applying the Kingdon multiple streams and the policy triangulation framework. Results: Iran is the first country in the Middle East and North Africa region, which has implemented nutrition traffic light labeling. The implementation process has gone through two phases: voluntary and mandatory. In the voluntary labeling, volunteer food manufacturers who chose to have the labels would receive an honorary logo and this helped to reduce the food-sector resistance gradually. After this phase, the traffic light labeling became mandatory. Despite these efforts, there has been poor involvement of media for public awareness and sensitization. Also, the inconsistency of nutrition traffic light colors which are based on food standard guidelines, lack of consistency between nutrition traffic light colors, the healthy/unhealthy nature of some food products such as olive oil and diet cola and the absence of a comprehensive evaluation plan were among the pitfalls and policy challenges identified. Conclusions: Strengthening the governance through improving collaboration within health and non-health sectors for implementation, more transparency of truthfulness of nutrition traffic labeling initiating with real ingredients, and applying international and local scientific evidence or any further revision of the program is recommended. Also, developing public awareness campaigns and revising school curriculums to improve students’ skills on nutrition label applications should be highly emphasized.

Keywords: nutrition labeling, policy analysis, food environment, Iran

Procedia PDF Downloads 191
2467 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan

Authors: Sheng Yu Chen, Shi-Heng Wang

Abstract:

Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.

Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases

Procedia PDF Downloads 82
2466 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 74
2465 Computational Approach to the Interaction of Neurotoxins and Kv1.3 Channel

Authors: Janneth González, George Barreto, Ludis Morales, Angélica Sabogal

Abstract:

Sea anemone neurotoxins are peptides that interact with Na+ and K+ channels, resulting in specific alterations on their functions. Some of these neurotoxins (1ROO, 1BGK, 2K9E, 1BEI) are important for the treatment of nearly eighty autoimmune disorders due to their specificity for Kv1.3 channel. The aim of this study was to identify the common residues among these neurotoxins by computational methods, and establish whether there is a pattern useful for the future generation of a treatment for autoimmune diseases. Our results showed eight new key common residues between the studied neurotoxins interacting with a histidine ring and the selectivity filter of the receptor, thus showing a possible pattern of interaction. This knowledge may serve as an input for the design of more promising drugs for autoimmune treatments.

Keywords: neurotoxins, potassium channel, Kv1.3, computational methods, autoimmune diseases

Procedia PDF Downloads 374
2464 Surface-Enhanced Raman Spectroscopy on Gold Nanoparticles in the Kidney Disease

Authors: Leonardo C. Pacheco-Londoño, Nataly J Galan-Freyle, Lisandro Pacheco-Lugo, Antonio Acosta-Hoyos, Elkin Navarro, Gustavo Aroca-Martinez, Karin Rondón-Payares, Alberto C. Espinosa-Garavito, Samuel P. Hernández-Rivera

Abstract:

At the Life Science Research Center at Simon Bolivar University, a primary focus is the diagnosis of various diseases, and the use of gold nanoparticles (Au-NPs) in diverse biomedical applications is continually expanding. In the present study, Au-NPs were employed as substrates for Surface-Enhanced Raman Spectroscopy (SERS) aimed at diagnosing kidney diseases arising from Lupus Nephritis (LN), preeclampsia (PC), and Hypertension (H). Discrimination models were developed for distinguishing patients with and without kidney diseases based on the SERS signals from urine samples by partial least squares-discriminant analysis (PLS-DA). A comparative study of the Raman signals across the three conditions was conducted, leading to the identification of potential metabolite signals. Model performance was assessed through cross-validation and external validation, determining parameters like sensitivity and specificity. Additionally, a secondary analysis was performed using machine learning (ML) models, wherein different ML algorithms were evaluated for their efficiency. Models’ validation was carried out using cross-validation and external validation, and other parameters were determined, such as sensitivity and specificity; the models showed average values of 0.9 for both parameters. Additionally, it is not possible to highlight this collaborative effort involved two university research centers and two healthcare institutions, ensuring ethical treatment and informed consent of patient samples.

Keywords: SERS, Raman, PLS-DA, kidney diseases

Procedia PDF Downloads 45
2463 Households’ Willingness to Pay for Environmental and General Health Safety during the Advent of Ebola Virus Diseases in Nigeria

Authors: Shittu Bisi Agnes

Abstract:

Studies on households’ willingness to pay for environmental and general health safety in the advent of Ebola virus Diseases in Nigeria was carried out. This is aimed at revealing the means by which the virus was eventually eradicated in Nigeria as widely claimed in the media. This study therefore attempted to determine the environmental and general health condition in the State Of Osun, how socio-economic characteristics of the people affected willingness to pay. And also provide platform for the reduction of environmental and general health problems. Data were collected with the aid of well-structured questionnaire and administer 150 randomly selected people of study area, and oral interview was also utilized. Data collected were analyzed using both descriptive tools and inferential statistics vis-a-viz regression analysis. Findings showed 92.5% of respondents was aware of ebola virus diseases outbreak in Nigeria, 8.5% was unaware of any disease outbreak. And 65.7% of respondents was strongly willing to pay for environmental and general health safety 27.1% was fairly willing, 5.7% was indifferent and 1.7% was unwilling to pay. 5% rated the level of environmental and general health condition in the area has been good, 53.6% rated theirs has been fair, 33.6% as been poor. The average willingness to pay per household per month were #500.00, #250.00, #150.00 and #100.00 respectively for the four categories. It was recommended that policy instruments to increase peoples' income will accelerate eradication of environmental and general health problems, environmental health education in form of talk shop, workshop, lectures and seminars could be organized at the political ward levels, churches, mosque, and at schools. Environmental and general health safety related information could be disseminated through mass media, market women, and functional unions.

Keywords: ebola virus diseases (EVD), socio-economic, safety, pay, Osun

Procedia PDF Downloads 412
2462 A Cross Culture Analysis of Medicinal Plants and Phytotherapies: Highly Effective for Gastropathic Disorders among Three Ethnic Communities of South West Pakistan

Authors: Sheikh Z. Ul Abidin, Raees Khan, Rainer W. Bussmann, Mushtaq Ahmad, Shayan Jamshed, Humera Jabeen, Ajmal Khan

Abstract:

Gastropathic disorders are increasing rapidly and millions patients are reported every years across the world. Herbal medicines and traditional phytotherapies are very effective for many diseases including gastropathic ailments. Many communities and study region have their own unique remedies for such diseases. The current study was aimed to investigate and document high valued medicinal plants and folk remedies for different gastropathic disorders among the three ethnic groups of three regions in South West Pakistan. A total of 104 semi-structured interviews involving experts of traditional knowledge in 21 localities of the three regions (D.I. Khan, Zhob and Mianwali) were conducted. The interviews were especially focused on the documentation of folk herbal remedies. The collected data was analyzed using different quantitative methods. The highly effective plants from all localities were identified with the help of local interviewers and collected for proper taxonomic identification. A total of 56 medicinal plants and 33 effective recipes for 12 gastropathic diseases were documented from all the three ethnic groups in 21 localities. Fabaceae and Asteraceae were most prominently used for different gastropathic diseases. Diarrhea, vomiting and dysentery were the most commonly diseases treated with herbal remedies. It was observed that the three communities shared knowledge about the use of medicinal plants, 35 species were commonly reported from all three areas. However, each community had also their own unique uses of medicinal plants, e.g. 23 plants species were only used in Zhob, 20 plant species were only reported in D.I. Khan and 16 species in Mianwali. The present study reveals that different communities and ethnic groups share some traditional knowledge and also have their own unique knowledge of plants utilization. Gastropathic disorder is increasing very rapidly and the traditional cross-cultural knowledge of medicinal plants use can be very effective for its cure.

Keywords: cross cultural, ethnic groups, gastropathy, phytotherapies, South West Pakistan

Procedia PDF Downloads 295
2461 Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi

Authors: Kamel A. Abd-Elsalam, Alexei R. Khokhlov

Abstract:

Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used.

Keywords: biohybrids, biocides, bioagent, plant pathogenic fungi

Procedia PDF Downloads 255
2460 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 119
2459 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases

Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand

Abstract:

Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.

Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement

Procedia PDF Downloads 80
2458 Descriptive Epidemiology of Mortality in Certain Species of Captive Deer in Pakistan

Authors: Musadiq Idris, Sajjad Ali, Syed A. Khaliq, Umer Farooq

Abstract:

Postmortem record of 217 captive ungulates including Black-buck (n=31), Chinkara (n=20), Hog deer (n=116), Spotted deer (n=35), Red Deer n=(04), and Rusa deer (n=11) submitted to the Veterinary Research Institute, Lahore, Pakistan was analyzed to determine the primary cause of mortality in these animals. The submissions included temporal distribution from Government wildlife captive farms, zoo, and private ownerships, over a three year period (2007-2009). The most common cause of death was found to be trauma (20.27%), followed by parasitic diseases (15.67%), bacterial diseases (11.98%), stillbirths (9.21%), snakebites (2.76%), gut affections (2.30%), neoplasia (1.38%) and starvation (0.92%). The exact cause of death could not be determined in 77 of 217 animals. Pneumonia (8.29%) and tuberculosis (3.69%) were the most common bacterial diseases. Analyses for parasitic infestation revealed tapeworms to be highest (11.05%), followed by roundworms (8.29%) and hemoparasitism (5.07%) (babesiosis and theileriosis). The mortality rate in young ungulates was lower as compared to adults (32.26% and 67.74%). Gender wise data presented higher mortality in females (55.30%) compared to males (44.70%). In conclusion, highest mortality factor in captive ungulates was trauma, followed by parasitic and bacterial infestations/infections of tapeworms and pneumonia, respectively. Furthermore, necropsies provided substantial information on etiology of death and other related epidemiological aspects.

Keywords: age, epidemiology, gender, mortality, ungulates

Procedia PDF Downloads 471