Search results for: artificial cell
3742 Data Protection, Data Privacy, Research Ethics in Policy Process Towards Effective Urban Planning Practice for Smart Cities
Authors: Eugenio Ferrer Santiago
Abstract:
The growing complexities of the modern world on high-end gadgets, software applications, scams, identity theft, and Artificial Intelligence (AI) make the “uninformed” the weak and vulnerable to be victims of cybercrimes. Artificial Intelligence is not a new thing in our daily lives; the principles of database management, logical programming, and garbage in and garbage out are all connected to AI. The Philippines had in place legal safeguards against the abuse of cyberspace, but self-regulation of key industry players and self-protection by individuals are primordial to attain the success of these initiatives. Data protection, Data Privacy, and Research Ethics must work hand in hand during the policy process in the course of urban planning practice in different environments. This paper focuses on the interconnection of data protection, data privacy, and research ethics in coming up with clear-cut policies against perpetrators in the urban planning professional practice relevant in sustainable communities and smart cities. This paper shall use expository methodology under qualitative research using secondary data from related literature, interviews/blogs, and the World Wide Web resources. The claims and recommendations of this paper will help policymakers and implementers in the policy cycle. This paper shall contribute to the body of knowledge as a simple treatise and communication channel to the reading community and future researchers to validate the claims and start an intellectual discourse for better knowledge generation for the good of all in the near future.Keywords: data privacy, data protection, urban planning, research ethics
Procedia PDF Downloads 623741 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3223740 Skin Substitutes for Wound Healing: An Advanced Formulation
Authors: Pennisi Stefania, Giuffrida Graziella, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta
Abstract:
Tissue engineering aims to develop advanced medical devices to restore normal functions of damaged tissue. These devices, even more effective than conventional methods, are called skin substitutes and are configured as drugs to be applied to the damaged area, to heal extensive and deep wounds which could otherwise lead to chronic wounds lasting over time. Among the variety of commercially available skin substitutes, those that have proven to be most effective are those consisting of a bilayer scaffold. The aim of our research was to design a skin substitute which can promote cell proliferation, cell migration and angiogenesis, and which can guarantee timely closure of the wound with satisfactory aesthetic results, in order to avoid the patient excessive pain, risk of contracting infections and long-term hospitalization. The product was tested in vitro using the Scratch Assay. The assay was carried out both on the matrix modified with hyaluronic acid and on the matrix based only on collagen. In both cases, after 48 hours of exposure the wound scratch was almost completely closed in treated cells compared to untreated control.Keywords: collagen, hyaluronic acid, scratch- wound-healing assay, tissue regeneration
Procedia PDF Downloads 313739 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications
Authors: Sadegh Sadeghi, Negar Shabani
Abstract:
From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle
Procedia PDF Downloads 1553738 The Impact of Artificial Intelligence on Digital Construction
Authors: Omil Nady Mahrous Maximous
Abstract:
The construction industry is currently experiencing a shift towards digitisation. This transformation is driven by adopting technologies like Building Information Modelling (BIM), drones, and augmented reality (AR). These advancements are revolutionizing the process of designing, constructing, and operating projects. BIM, for instance, is a new way of communicating and exploiting technology such as software and machinery. It enables the creation of a replica or virtual model of buildings or infrastructure projects. It facilitates simulating construction procedures, identifying issues beforehand, and optimizing designs accordingly. Drones are another tool in this revolution, as they can be utilized for site surveys, inspections, and even deliveries. Moreover, AR technology provides real-time information to workers involved in the project. Implementing these technologies in the construction industry has brought about improvements in efficiency, safety measures, and sustainable practices. BIM helps minimize rework and waste materials, while drones contribute to safety by reducing workers' exposure to areas. Additionally, AR plays a role in worker safety by delivering instructions and guidance during operations. Although the digital transformation within the construction industry is still in its early stages, it holds the potential to reshape project delivery methods entirely. By embracing these technologies, construction companies can boost their profitability while simultaneously reducing their environmental impact and ensuring safer practices.Keywords: architectural education, construction industry, digital learning environments, immersive learning BIM, digital construction, construction technologies, digital transformation artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction
Procedia PDF Downloads 623737 Electrically Tuned Photoelectrochemical Properties of Ferroelectric PVDF/Cu/PVDF-NaNbO₃ Photoanode
Authors: Simrjit Singh, Neeraj Khare
Abstract:
In recent years, photo-electrochemical (PEC) water splitting with an aim to generate hydrogen (H₂) as a clean and renewable fuel has been the subject of intense research interests. Ferroelectric semiconductors have been demonstrated to exhibit enhanced PEC properties as these can be polarized with the application of an external electric field resulting in a built-in potential which helps in separating out the photogenerated charge carriers. In addition to this, by changing the polarization direction, the energy band alignment at the electrode/electrolyte interface can be modulated in a way that it can help in the easy transfer of the charge carriers from the electrode to the electrolyte. In this paper, we investigated the photoelectrochemical properties of ferroelectric PVDF/Cu/PVDF-NaNbO₃ PEC cell and demonstrated that PEC properties can be tuned with ferroelectric polarization and piezophototronic effect. Photocurrent density is enhanced from ~0.71 mA/cm² to 1.97 mA/cm² by changing the polarization direction. Furthermore, due to flexibility and piezoelectric properties of PVDF/Cu/PVDF-NaNbO₃ PEC cell, a further ~26% enhancement in the photocurrent is obtained using the piezophototronic effect. A model depicting the modulation of band alignment between PVDF and NaNbO₃ with the electric field is proposed to explain the observed tuning of the PEC properties. Electrochemical Impedance spectroscopy measurements support the validity of the proposed model.Keywords: electrical tuning, H₂ generation, photoelectrochemical, NaNbO₃
Procedia PDF Downloads 1723736 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity
Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam
Abstract:
The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistanceKeywords: antibacterial, bioreduction, nanoparticles, surfactant
Procedia PDF Downloads 2373735 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials
Authors: Christian C. Vaso, Rinlee Butch M. Cervera
Abstract:
One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy
Procedia PDF Downloads 2513734 Laboratory Evaluation of Bacillus subtilis Bioactivity on Musca domestica (Linn) (Diptera: Muscidae) Larvae from Poultry Farms in South Western Nigeria
Authors: Funmilola O. Omoya
Abstract:
Muscid flies are known to be vectors of disease agents and species that annoy humans and domesticated animals. An example of these flies is Musca domestica (house fly) whose adult and immature stages occur in a variety of filthy organic substances including household garbage and animal manures. They contribute to microbial contamination of foods. It is therefore imperative to control these flies as a result of their role in Public health. The second and third instars of Musca domestica (Linn) were infected with varying cell loads of Bacillus subtilis in vitro for a period of 48 hours to evaluate its larvicidal activities. Mortality of the larvae increased with incubation period after treatment with the varying cell loads. Investigation revealed that the second instars larvae were more susceptible to treatment than the third instars treatments. Values obtained from the third instar group were significantly different (P0.05) from those obtained from the second instars group in all the treatments. Lethal concentration (LC50) at 24 hours for 2nd instars was 2.35 while LC50 at 48 hours was 4.31.This study revealed that Bacillus subtilis possess good larvicidal potential for use in the control of Musca domestica in poultry farms.Keywords: Bacillus subtilis, Musca domestica, larvicidal activities, poultry farms
Procedia PDF Downloads 4303733 Computational Study on the Crystal Structure, Electronic and Optical Properties of Perovskites a2bx6 for Photovoltaic Applications
Authors: Harmel Meriem
Abstract:
The optoelectronic properties and high power conversion efficiency make lead halide perovskites ideal material for solar cell applications. However, the toxic nature of lead and the instability of organic cation are the two key challenges in the emerging perovskite solar cells. To overcome these challenges, we present our study about finding potential alternatives to lead in the form of A2BX6 perovskite using the first principles DFT-based calculations. The highly accurate modified Becke Johnson (mBJ) and hybrid functional (HSE06) have been used to investigate the Main Document Click here to view linked References to optoelectronic and thermoelectric properties of A2PdBr6 (A = K, Rb, and Cs) perovskite. The results indicate that different A-cations in A2PdBr6 can significantly alter their electronic and optical properties. Calculated band structures indicate semiconducting nature, with band gap values of 1.84, 1.53, and 1.54 eV for K2PdBr6, Rb2PdBr6, and Cs2PdBr6, respectively. We find strong optical absorption in the visible region with small effective masses for A2PdBr6. The ideal band gap and optimum light absorption suggest Rb2PdBr6 and Cs2PdBr6 potential candidates for the light absorption layer in perovskite solar cells. Additionally.Keywords: soler cell, double perovskite, optoelectronic properties, ab-inotio study
Procedia PDF Downloads 1303732 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots
Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu
Abstract:
Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law
Procedia PDF Downloads 863731 Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)
Authors: A. Gilewska, J. Masternak, K. Kazimierczuk, L. Turlej, J. Wietrzyk, B. Barszcz
Abstract:
Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA).Keywords: ruthenium(II) complex, rhodium(III) complex, iridium(III) complex, biological activity
Procedia PDF Downloads 1393730 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels
Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand
Abstract:
The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing
Procedia PDF Downloads 3133729 In vivo Evidence of Protective Effect of Hyparrhenia Hirta against Nitrate-Induced Genotoxicity
Authors: H. Bouaziz-Ketata, G. Ben Salah, Z. Aidi, C. Kallel, H. Kammoun, F. Fakhfakh, N. Zeghal
Abstract:
The present study was performed to evaluate the potential protective effect of Hyparrhenia hirta methanolic extract in NaNO3-induced genotoxic and hematotoxic effects. Male Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered at a dose of 400 mg kg-1 bw either alone in drinking water or co-administered with Hyparrhenia hirta at a dose of 200 mg kg-1 bw. NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. In parallel, the NaNO3-treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Hyparrhenia hirta methanolic extract appeared to be effective against genotoxic and hematotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above.Keywords: Hyparrhenia hirta, sodium nitrate, erythrocytes, genotoxicity
Procedia PDF Downloads 2633728 Development of Dye Sensitized Solar Window by Physical Parameters Optimization
Authors: Tahsin Shameem, Chowdhury Sadman Jahan, Mohammad Alam
Abstract:
Interest about Net Zero Energy Buildings have gained traction in recent years following the need to sustain energy consumption with generations on site and to reduce dependence on grid supplied energy from large plants using fossil fuel. With this end in view, building integrated photovoltaics are being studied attempting to utilize all exterior facades of a building to generate power. In this paper, we have looked at the physical parameters defining a dye sensitized solar cell (DSSC) and discussed their impact on energy harvest. Following our discussion and experimental data obtained from literature, we have attempted to optimize these physical parameters accordingly so as to allow maximum light absorption for a given active layer thickness. We then modified a planer DSSC design with our optimized properties to allow adequate light transmission which demonstrated a high fill factor and an External Quantum Efficiency (EQE) of greater than 9% by computer aided design and simulation. In conclusion, a DSSC based solar window with such high output values even after such high light transmission through it definitely flags a promising future for this technology and our work elicits the need for further study and practical experimentation.Keywords: net zero energy building, integrated photovoltaics, dye sensitized solar cell, fill factor, External Quantum Efficiency
Procedia PDF Downloads 1423727 In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains
Authors: M. G. Shehata, S. A. El Sohaimy, Marwa M. Abu-Serie, Nourhan M. Abd El-Aziz
Abstract:
Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants.Keywords: anticancer activity, antioxidant activity, functional food, lactic acid bacteria, probiotic
Procedia PDF Downloads 2263726 The Effects of Electron Trapping by Electron-Ecoustic Waves Excited with Electron Beam
Authors: Abid Ali Abid
Abstract:
One-dimensional (1-D) particle-in-cell (PIC) electrostatic simulations are carried out to investigate the electrostatic waves, whose constituents are hot, cold and beam electrons in the background of motionless positive ions. In fact, the electrostatic modes excited are electron acoustic waves, beam driven waves as well as Langmuir waves. It is assessed that the relevant plasma parameters, for example, hot electron temperature, beam electron drift speed, and the electron beam density significantly modify the electrostatics wave's profiles. In the nonlinear stage, the wave-particle interaction becomes more evident and the waves have obtained its saturation level. Consequently, electrons become trapped in the waves and trapping vortices are clearly formed. Because of this trapping vortices and mixing of the electrons in phase space, finally, lead to electrons thermalization. It is observed that for the high-density value of the beam-electron, the solitary waves having a bipolar form of the electric field. These solitons are the nonlinear Brenstein-Greene and Kruskal wave mode that attributes the trapping of electrons potential well of phase-space hole. These examinations revealed that electrostatic waves have been exited in beam-plasma model and producing waves having broad-frequency ranges, which may clarify the broadband electrostatic noise (BEN) spectrum studied in the auroral zone.Keywords: electron acoustic waves, trapping of cold electron, Langmuir waves, particle-in cell simulation
Procedia PDF Downloads 2083725 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 863724 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 643723 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier
Authors: Abhigna Bhatt, Arnab Banerjee
Abstract:
A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform
Procedia PDF Downloads 1293722 Green Synthesis of Nano Liposomes Containing Berberine Chlorideagainst Leishmania major
Authors: Ali Fattahi Bafghi, Abolghasem Siyadatpanah, Farzaneh Mirzaei, Fahimeh Pournasir, Roghayeh Norouzi, Maria De Lourdes Pereira
Abstract:
Leishmaniasis caused by Leishmania major is one of the main infectious diseases that affect populations in developing countries around the world. We assessed the effectiveness of berberine chloride nano-liposome (BcNLs) against L. major promastigotes in vitro. Nano-liposomal berberine chloride was prepared using the thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Anti-Leishmania effect of different concentrations (0.05-60 µg/ml) of BcNLs as studied in L. major [MRHO/IR/75/ER] at 24, 48, and 72 h using the hemocytometer technique. Berberine chloride was successfully loaded into nano-liposomes with an encapsulation efficiency of 85.54%. The surface charge of nanoparticles is neutral, and the morphology of nano-liposomal berberine chloride is spherical without any agglomeration. Cell viability assay was performed on the HFF cell line to show the biocompatibility of liposome nanoparticles. IC50 of BcNPs at 24, 48, and 72 h against L. major were found to be 7.6, 5.96, and 3.19 µg/ml, respectively. BcNLs showed a significant anti-Leishmania effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigation. The results showed that the BcNLs agent is effective against L. major promastigotes and may be a promising alternative to current treatments.Keywords: Leishmania major, berberine chloride, nano-liposomes, cutaneous leishmaniasis
Procedia PDF Downloads 1543721 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence
Authors: Garry Gorman, Nigel McKelvey, James Connolly
Abstract:
This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.Keywords: computer science education, artificial intelligence, growth mindset, pedagogy
Procedia PDF Downloads 913720 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 3063719 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12
Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto
Abstract:
Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin
Procedia PDF Downloads 4683718 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing
Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque
Abstract:
Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle
Procedia PDF Downloads 1043717 Preparation and Evaluation of siRNA Loaded Polymeric Nanoparticles
Authors: Riddhi Trivedi, Shrenik Shah
Abstract:
For Si RNA to be delivered various biodegradable polymers are trialed by many researchers. One of them is Chitosan (CS) nanoparticles which have been extensively studied for siRNA delivery but the stability and efficacy of such particles are highly dependent on the types of cross-linker used. Hence the attempts are made in this study with PGA To address this issue, three common cross-linkers; Ethylene glycol diacrylate (ED) and poly-D-glutamic acid (PGA) were used to prepare siRNA loaded CS-ED/PGA nanoparticles by ionic gelation method. The nanoparticles which were obtained were compared for its characterization in terms of its physicochemical properties i.e. particle size of the resultant particles, zeta potential, its encapsulation capacity in the polymer. Among all the formulations prepared with different crosslinker PGA siRNA had the smallest particle size (ranged from 120 ± 1.7 to 500 ± 10.9 nm) with zeta potential ranged from 22.1 ± 1.5 to +32.4 ± 0.5 mV, and high entrapment ( > 91%) and binding efficiencies. Similarly, CS-ED nanoparticles showed better siRNA protection during storage at 4˚C and as determined by serum protection assay. TEM micrographs revealed the assorted morphology of CS-PGA-siRNA nanoparticles in contrast to irregular morphology displayed by CS-ED-siRNA. All siRNA loaded nanoparticles were found to give initial burst release which after some time followed by a sustained release of siRNA which were loaded inside. All the formulations showed concentration-dependent cytotoxicity with when cytotoxicity performed by HeLa and normal vero cell lines.Keywords: chitosan, siRNA, cytotoxicity, cell line study
Procedia PDF Downloads 3043716 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 663715 Mechanism of Action of Troxerutin in Reducing Oxidative Stress
Authors: Nasrin Hosseinzad
Abstract:
Troxerutin, a trihydroxyethylated derived of rutin, is a flavonoid existing in tea, coffee, cereal grains, various fruits and vegetables have been conveyed to display radioprotective, antithrombotic, nephron-protective and hepato-protective possessions. Troxerutin, has been well-proved to utilize hepatoprotective assets. Troxerutin could upturn the resistance of hippocampal neurons alongside apoptosis by lessening the action of AChE and oxidative stress. Consequently, troxerutin may have advantageous properties in the administration of Alzheimer's disease and cancer. Troxerutin has been testified to have several welfares and medicinal stuffs. It could shelter the mouse kidney against d-gal-induced damage by refining renal utility, decreasing histopathologic changes, dropping ROS construction, reintroducing the activities of antioxidant enzymes and reducing DNA oxidative destruction. The DNA cleavage study clarifies that troxerutin showed DNA protection against hydroxyl radical persuaded DNA mutilation. Troxerutin uses anti-cancer effect in HuH-7 hepatocarcinoma cells conceivably through synchronized regulation of the molecular signalling pathways, Nrf2 and NF-κB. DNA binding at slight channel by troxerutin may have donated to feature breaks leading to improved radiation brought cell death. Furthermore, the mechanism principal the observed variance in the antioxidant activities of troxerutin and its esters was qualified to equally their free radical scavenging capabilities and dissemination on the cell membrane outward.Keywords: troxerutin, DNA, oxidative stress, antioxidant, free radical
Procedia PDF Downloads 1613714 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 1433713 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms
Authors: Abdul Rehman, Bo Liu
Abstract:
Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization
Procedia PDF Downloads 226