Search results for: negative binomial model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20698

Search results for: negative binomial model

18988 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation

Authors: Zhidong Zhang

Abstract:

This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.

Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis

Procedia PDF Downloads 178
18987 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system

Procedia PDF Downloads 369
18986 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
18985 The Adaptive Role of Negative Emotions in Optimal Functioning

Authors: Brianne Nichols, John A. Parkinson

Abstract:

Positive Psychology has provided a rich understanding of the beneficial effects of positive emotions in relation to optimal functioning, and research has been devoted to promote states of positive feeling and thinking. While this is a worthwhile pursuit, positive emotions are not useful in all contexts - some situations may require the individual to make use of their negative emotions to reach a desired end state. To account for the potential value of a wider range of emotional experiences that are common to the human condition, Positive Psychology needs to expand its horizons and investigate how individuals achieve positive outcomes using varied means. The current research seeks to understand the positive psychology of fear of failure (FF), which is a commonly experienced negative emotion relevant to most life domains. On the one hand, this emotion has been linked with avoidance motivation and self-handicap behaviours, on the other; FF has been shown to act as a drive to move the individual forward. To fully capture the depth of this highly subjective emotional experience and understand the circumstances under which FF may be adaptive, this study adopted a mixed methods design using SenseMaker; a web-based tool that combines the richness of narratives with the objectivity of numerical data. Two hundred participants consisting mostly of undergraduate university students shared a story of a time in the recent past when they feared failure of achieving a valued goal. To avoid researcher bias in the interpretation of narratives, participants self-signified their stories in a tagging system that was based on researchers’ aim to explore the role of past failures, the cognitive, emotional and behavioural profile of individuals high and low in FF, and the relationship between these factors. In addition, the role of perceived personal control and self-esteem were investigated in relation to FF using self-report questionnaires. Results from quantitative analyses indicated that individuals with high levels of FF, compared to low, were strongly influenced by past failures and preoccupied with their thoughts and emotions relating to the fear. This group also reported an unwillingness to accept their internal experiences, which in turn was associated with withdrawal from goal pursuit. Furthermore, self-esteem was found to mediate the relationship between perceived control and FF, suggesting that self-esteem, with or without control beliefs, may have the potential to buffer against high FF. It is hoped that the insights provided by the current study will inspire future research to explore the ways in which ‘acceptance’ may help individuals keep moving towards a goal despite the presence of FF, and whether cultivating a non-contingent self-esteem is the key to resilience in the face of failures.

Keywords: fear of failure, goal-pursuit, negative emotions, optimal functioning, resilience

Procedia PDF Downloads 195
18984 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.

Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability

Procedia PDF Downloads 274
18983 A Resource Optimization Strategy for CPU (Central Processing Unit) Intensive Applications

Authors: Junjie Peng, Jinbao Chen, Shuai Kong, Danxu Liu

Abstract:

On the basis of traditional resource allocation strategies, the usage of resources on physical servers in cloud data center is great uncertain. It will cause waste of resources if the assignment of tasks is not enough. On the contrary, it will cause overload if the assignment of tasks is too much. This is especially obvious when the applications are the same type because of its resource preferences. Considering CPU intensive application is one of the most common types of application in the cloud, we studied the optimization strategy for CPU intensive applications on the same server. We used resource preferences to analyze the case that multiple CPU intensive applications run simultaneously, and put forward a model which can predict the execution time for CPU intensive applications which run simultaneously. Based on the prediction model, we proposed the method to select the appropriate number of applications for a machine. Experiments show that the model can predict the execution time accurately for CPU intensive applications. To improve the execution efficiency of applications, we propose a scheduling model based on priority for CPU intensive applications. Extensive experiments verify the validity of the scheduling model.

Keywords: cloud computing, CPU intensive applications, resource optimization, strategy

Procedia PDF Downloads 278
18982 Simulation Model of Biosensor Based on Gold Nanoparticles

Authors: Kholod Hajo

Abstract:

In this study COMSOL Multiphysics was used to design lateral flow biosensors (LFBs) which provide advantages in low cost, simplicity, rapidity, stability and portability thus making LFBs popular in biomedical, agriculture, food and environmental sciences. This study was focused on simulation model of biosensor based on gold nanoparticles (GNPs) designed using software package (COMSOL Multiphysics), the magnitude of the laminar velocity field in the flow cell, concentration distribution in the analyte stream and surface coverage of adsorbed species and average fractional surface coverage of adsorbed analyte were discussed from the model and couples of suggestion was given in order to functionalize GNPs and to increase the accuracy of the biosensor design, all above were obtained acceptable results.

Keywords: model, gold nanoparticles, biosensor, COMSOL Multiphysics

Procedia PDF Downloads 257
18981 Anti-Microbial Activity of Senna garrettiana Extract

Authors: Pun Jankrajangjaeng

Abstract:

Senna garrettiana is a climatic tropical plant in Southeast Asia. Senna garrettiana (Craib) is used as a medicinal plant in Thailand, in which the experiment reported that the plant contains triterpenoids, ligans, phenolics, and fungal metabolites. Thus, it is also reported that the plant possesses interesting biological activity such as antioxidant activity. Therefore, Senna garrettiana is selected to examine the antimicrobial activity. The purpose of this study is to examine the antimicrobial activity of Senna garrettiana (crab) extract against Gram-positive Staphylococcus aureus and Gram-negative Salmonella typhi, and the fungus Candida albicans. This study performed the agar disk-diffusion method and broth microdilution by using five concentrations of plant extract to determine the minimum inhibitory concentration (MIC) of S. garrettiana extract. The result showed that S. garrettiana extract gave the maximum zone inhibition of 11.7 mm, 13.7 mm, and 14.0 mm against S. aureus, S. typhi, and C. albicans, respectively. The MIC value of S. garrettiana against S. aureus was 125 µg/mL while the MIC in S. typhi and C. albicans greater than 2000 µg/mL. To conclude, S. garrettiana extract showed higher sensitivity of antibacterial activity against gram-positive bacteria than gram-negative bacteria. In addition, the plant extracts also possessed antifungal activity. Therefore, further investigation to confirm the mechanism of action of antimicrobial activity in S. garrettiana extract should be performed to identify the target of the antimicrobial action.

Keywords: antimicrobial activity, Candida albicans, Salmonella typhi, Senna garrettiana, Staphylococcus aureus

Procedia PDF Downloads 196
18980 Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical

Authors: Nai-Chia Chao, Meng-Chi Shih

Abstract:

Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans.

Keywords: arts integration, co-working, children's musical

Procedia PDF Downloads 300
18979 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 178
18978 Effect of Maize Straw-Derived Biochar on Imidacloprid Adsorption onto Soils Prior to No-Tillage and Rotary Tillage Practices

Authors: Jean Yves Uwamungu, Fiston Bizimana, Chunsheng Hu

Abstract:

Although pesticides are used in crop productivity, their use is highly harming the soil environment, and measures must be taken in the future to eradicate soil and groundwater pollution. The primary aim was to determine the effect of biochar addition on the imidacloprid adsorption on soil prior to no-tillage (NT) and rotational tillage (RT) conditions. In the laboratory, batch tests were conducted to determine the imidacloprid adsorption on soil using equilibrium and kinetic modelling with the addition of biochar. The clay level of the soil was found to be more significant when no-tillage was applied (22.42) than when rotational tillage was applied (14.27). The imidacloprid adsorption equilibrium was significantly shortened to 25 min after biochar addition. The isotherms and kinetic findings confirmed that the adsorption occurred according to Freundlich and pseudo-second-order kinetic models, respectively. The adsorption capacity of imidacloprid (40<35<25 °C) increased with decreasing temperature, indicating an exothermic adsorption behaviour, whereas negative Gibbs free energy (G) values of -6980.5 and 5983.93 Jmol-1, respectively, for soil prior to NT and RT at 25 °C, asserted spontaneous adsorption. The negative values of entropy (ΔS); -22.83 and -38.15 Jmol-1K-1, prior to NT and RT applications, respectively, described a lowered randomness process. The enthalpy was greater when RT was applied (-17533 J mol-1) than when NT was applied (-450 J mol-1). Lastly, it was shown that NTtreatment enhanced imidacloprid adsorption capacity more than RT treatment and that biochar addition enhanced pesticide adsorption in both treatments.

Keywords: adsorption, biochar, imidacloprid, soil, tillage

Procedia PDF Downloads 148
18977 Smallholder Participation in Organized Retail Markets: Evidence from India

Authors: Kedar Vishnu, Parmod Kumar

Abstract:

India is becoming most favored retail destination in the world. The organized retail has presented many opportunities to farmers to increase income by shifting cropping pattern from food grains to commercial crops. Previous research revealed potential benefits for farmers by supplying fruits and vegetables to organized retail channels. However the supply of fruits and vegetables from small and marginal farmers remain low than expected. The main objective of this paper is to identify the factors determining market participation of smallholder farmers in modern organized retail chains. Attempt is also made to find out factors influencing the choice of participation in particular organized retail collection centers as compared to other organized retail. The paper was based on primary survey of 40 Beans and Tomato farmers who supply to organized retail collection centers from Karnataka, India. Multiple regression technique is used to identify the factors determining quantity sold at collection centers. The regression result, show that area under vegetables, yield, and price from modern collection center and having access to technical help were found significantly affecting quantity sold into modern organized retail channels. On the opposite, increased rejection rates and vegetable prices at APMC were found influencing farmers decision into the reverse side. Empirical result of the multinomial logit model show that Reliance fresh has tendency to prefer large farmers who can supply more quality and better quantity compared with TESCO and More collection centers. The negative sign of area, having access to technical help, transportation cost, and number of bore wells led to higher probability of farmers to participate in Reliance Fresh collection centers as compared with More and TESCO.

Keywords: fruits, vegetables, organized retail markets, multinomial logit model

Procedia PDF Downloads 345
18976 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach

Authors: Long Pham, Julia Blanke

Abstract:

An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.

Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement

Procedia PDF Downloads 226
18975 Urban Flood Resilience Comprehensive Assessment of "720" Rainstorm in Zhengzhou Based on Multiple Factors

Authors: Meiyan Gao, Zongmin Wang, Haibo Yang, Qiuhua Liang

Abstract:

Under the background of global climate change and rapid development of modern urbanization, the frequency of climate disasters such as extreme precipitation in cities around the world is gradually increasing. In this paper, Hi-PIMS model is used to simulate the "720" flood in Zhengzhou, and the continuous stages of flood resilience are determined with the urban flood stages are divided. The flood resilience curve under the influence of multiple factors were determined and the urban flood toughness was evaluated by combining the results of resilience curves. The flood resilience of urban unit grid was evaluated based on economy, population, road network, hospital distribution and land use type. Firstly, the rainfall data of meteorological stations near Zhengzhou and the remote sensing rainfall data from July 17 to 22, 2021 were collected. The Kriging interpolation method was used to expand the rainfall data of Zhengzhou. According to the rainfall data, the flood process generated by four rainfall events in Zhengzhou was reproduced. Based on the results of the inundation range and inundation depth in different areas, the flood process was divided into four stages: absorption, resistance, overload and recovery based on the once in 50 years rainfall standard. At the same time, based on the levels of slope, GDP, population, hospital affected area, land use type, road network density and other aspects, the resilience curve was applied to evaluate the urban flood resilience of different regional units, and the difference of flood process of different precipitation in "720" rainstorm in Zhengzhou was analyzed. Faced with more than 1,000 years of rainstorm, most areas are quickly entering the stage of overload. The influence levels of factors in different areas are different, some areas with ramps or higher terrain have better resilience, and restore normal social order faster, that is, the recovery stage needs shorter time. Some low-lying areas or special terrain, such as tunnels, will enter the overload stage faster in the case of heavy rainfall. As a result, high levels of flood protection, water level warning systems and faster emergency response are needed in areas with low resilience and high risk. The building density of built-up area, population of densely populated area and road network density all have a certain negative impact on urban flood resistance, and the positive impact of slope on flood resilience is also very obvious. While hospitals can have positive effects on medical treatment, they also have negative effects such as population density and asset density when they encounter floods. The result of a separate comparison of the unit grid of hospitals shows that the resilience of hospitals in the distribution range is low when they encounter floods. Therefore, in addition to improving the flood resistance capacity of cities, through reasonable planning can also increase the flood response capacity of cities. Changes in these influencing factors can further improve urban flood resilience, such as raise design standards and the temporary water storage area when floods occur, train the response speed of emergency personnel and adjust emergency support equipment.

Keywords: urban flood resilience, resilience assessment, hydrodynamic model, resilience curve

Procedia PDF Downloads 40
18974 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 338
18973 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 492
18972 Optimization Process for Ride Quality of a Nonlinear Suspension Model Based on Newton-Euler’ Augmented Formulation

Authors: Mohamed Belhorma, Aboubakar S. Bouchikhi, Belkacem Bounab

Abstract:

This paper addresses modeling a Double A-Arm suspension, a three-dimensional nonlinear model has been developed using the multibody systems formalism. Dynamical study of the different components responses was done, particularly for the wheel assembly. To validate those results, the system was constructed and simulated by RecurDyn, a professional multibody dynamics simulation software. The model has been used as the Objectif function in an optimization algorithm for ride quality improvement.

Keywords: double A-Arm suspension, multibody systems, ride quality optimization, dynamic simulation

Procedia PDF Downloads 138
18971 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 14
18970 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 329
18969 Improving the Performance of Road Salt on Anti-Icing

Authors: Mohsen Abotalebi Esfahani, Amin Rahimi

Abstract:

Maintenance and management of route and roads infrastructure is one of the most important and the most fundamental principles of the countries. Several methods have been under investigation as preventive proceedings for the maintenance of asphalt pavements for many years. Using a mixture of salt, sand and gravel is the most common method of deicing, which could have numerous harmful consequences. Icy or snow-covered road is one of the major reasons of accidents in rainy seasons, which causes substantial damages such as loss of time and energy, environmental pollution, destruction of buildings, traffic congestion and rising possibility of accidents. Regarding this, every year the government incurred enormous costs to secure traverses. In this study, asphalt pavements have been cured, in terms of compressive strength, tensile strength and resilient modulus of asphalt samples, under the influence of Magnesium Chloride, Calcium Chloride, Sodium Chloride, Urea and pure water; and showed that de-icing with the calcium chloride solution and urea have the minimum negative effect and de-icing with pure water has most negative effect on laboratory specimens. Hence some simple techniques and new equipment and less use of sand and salt, can reduce significantly the risks and harmful effects of excessive use of salt, sand and gravel and at the same time use the safer roads.

Keywords: maintenance, sodium chloride, icyroad, calcium chloride

Procedia PDF Downloads 284
18968 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation

Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders

Abstract:

Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.

Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas

Procedia PDF Downloads 272
18967 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
18966 The Effects of Prosocial and Antisocial Behaviors on Task Cohesion and Burnout: The Role of Affect and Motivational Climate

Authors: Ali Al-Yaaribi, Maria Kavussanu

Abstract:

Prosocial and antisocial behavior occurs in sport. Prosocial behavior is voluntary behavior intended to help or benefit another individual, while antisocial behavior is behavior intended to harm or disadvantage another individual. Previous sport morality research has investigated primarily antecedents of prosocial and antisocial behavior. However, the potential consequences of these behaviors remain unexplored. The aims of this study were to examine whether: (a) perceived prosocial and antisocial teammate behavior predicts task cohesion and burnout; (b) affect mediate these relationships; and (c) motivational climate moderates any of these effects. Participants were male (n = 96) and female (n = 176) teams sport players (Mage = 21.86, SD = 4.36), who completed questionnaires measuring the aforementioned variables. Mediation analysis (Hayes, 2013) indicated that prosocial teammate behavior positively predicted task cohesion and negatively predicted burnout; these effects were mediated by positive affect. Also, mastery climate moderated the positive effect of prosocial teammate behavior on task cohesion: The effect of antisocial teammate behavior on task cohesion was stronger for players who perceived a higher mastery climate created by their coaches. Performance climate moderated the negative effect of prosocial teammate behavior on burnout: This effect was only significant for players who perceived moderate or low levels of performance team climate. Antisocial teammate behavior negatively predicted task cohesion and positively predicted burnout, and these effects were mediated by negative affect. Also, performance climate moderated the positive effect of antisocial teammate behavior on burnout, such that the effect of antisocial teammate behavior on burnout was stronger for players who perceived a lower performance climate. The research findings shed some light on the potential role of prosocial and antisocial teammate behaviors as well as coach-created motivational climate on influencing players’ affect, task cohesion, and burnout. Coaches should focus on creating a mastery motivational climate and rewarding prosocial behavior while at the same time trying to deter antisocial behavior among teammates in order to enhance positive affect, task cohesion, and prevent experience of negative affect and burnout.

Keywords: mediation, moderation, morality, teams sport

Procedia PDF Downloads 355
18965 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 243
18964 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 363
18963 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 136
18962 Women's Sexual Experience in Pakistan: Associations of Patriarchy and Psychological Distress

Authors: Sana Tahir, Haya Fatimah

Abstract:

Sexuality is a social construct which is considered as the most confidential affair among individuals where women tend to refrain themselves more from sexually explicit behavior than men. Patriarchy has an elevated influence on the expression of female sexuality. While women’s sexual experiences are suppressed men are entitled to pleasure themselves according to their desire. The purpose of this study is to explore how the internalization of patriarchy affects women’s sexuality. Similarly, it was investigated how women sexuality is associated with psychological distress. The sample consisted of 100(age 20-40) married women. Participants were selected through a combination of convenient and snowball sampling. Women were asked to provide data regarding patriarchal beliefs, sexual awareness and DAS (depression, anxiety, and stress). Pearson Product Moment Correlation Analyze was conducted to examine the nature of the relationship between patriarchal beliefs, sexual awareness and psychological distress in married women. There is a significant negative relation between sexual awareness and patriarchal beliefs (r=-.391, p<.001). There also lies a significant negative relation between sexual awareness and depression, anxiety, stress (r=-.359, p<.001) (r=.301, p=.002) (r=-.221, p=.027). The results reveal that women with strong patriarchal beliefs have less sexual awareness in terms of sexual consciousness, sexual monitoring, sexual assertiveness and sexual appeal consciousness. Similarly, women with strong patriarchal beliefs and less sexual awareness have high levels of depression, anxiety, and stress.

Keywords: female sexuality, patriarchy, psychological distress, sexual awareness

Procedia PDF Downloads 301
18961 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 86
18960 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 367
18959 Systematic and Simple Guidance for Feed Forward Design in Model Predictive Control

Authors: Shukri Dughman, Anthony Rossiter

Abstract:

This paper builds on earlier work which demonstrated that Model Predictive Control (MPC) may give a poor choice of default feed forward compensator. By first demonstrating the impact of future information of target changes on the performance, this paper proposes a pragmatic method for identifying the amount of future information on the target that can be utilised effectively in both finite and infinite horizon algorithms. Numerical illustrations in MATLAB give evidence of the efficacy of the proposal.

Keywords: model predictive control, tracking control, advance knowledge, feed forward

Procedia PDF Downloads 547