Search results for: electrochemical impedance spectra
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1710

Search results for: electrochemical impedance spectra

540 Optimization of Operational Parameters and Design of an Electrochlorination System to Produce Naclo

Authors: Pablo Ignacio Hernández Arango, Niels Lindemeyer

Abstract:

Chlorine, as Sodium Hypochlorite (NaClO) solution in water, is an effective, worldwide spread, and economical substance to eliminate germs in the water. The disinfection potential of chlorine lies in its ability to degrade the outer surfaces of bacterial cells and viruses. This contribution reports the main parameters of the brine electrolysis for the production of NaClO, which is afterward used for the disinfection of water either for drinking or recreative uses. Herein, the system design was simulated, optimized, build, and tested based on titanium electrodes. The process optimization considers the whole process, from the salt (NaCl) dilution tank in order to maximize its operation time util the electrolysis itself in order to maximize the chlorine production reducing the energy and raw material (salt and water) consumption. One novel idea behind this optimization process is the modification of the flow pattern inside the electrochemical reactors. The increasing turbulence and residence time impact positively the operations figures. The operational parameters, which are defined in this study were compared and benchmarked with the parameters of actual commercial systems in order to validate the pertinency of those results.

Keywords: electrolysis, water disinfection, sodium hypochlorite, process optimization

Procedia PDF Downloads 119
539 Effect of Demineralized Water Purity on the Corrosion Behavior of Steel Alloys

Authors: A. M. El-Aziz, M. Elsehamy, H. Hussein

Abstract:

Steel or stainless steel have reasonable corrosion behavior in water, their corrosion resistance is significantly dependent on the water purity. It was not expected that demineralized water has an aggressive effect on steel alloys, in this study, the effect of water with different purity on steel X52 and stainless steel 316L was investigated. Weight loss and electrochemical measurements were employed to measure the corrosion behavior. Samples were microscopically investigated after test. It was observed that the higher the water purity the more reactive it is. Comparative analysis of the potentiodynamic curves for different water purity showed the aggressiveness of the demineralised water (conductivity of 0.05 microSiemens per cm) over the distilled water. Whereas, the corrosion rates of stainless steel 858 and 623 nm/y for demi and distilled water respectively. On the other hand, the corrosion rates of carbon steel x52 were estimated about 4.8 and 3.6 µm/y for demi and distilled water, respectively. Open circuit potential (OCP) recorded more positive potentials in case of stainless steel than carbon steel in different water purities. Generally, stainless steel illustrated high pitting resistance than carbon steel alloy, the surface film was investigated by scanning electron microscopy (SEM) and analyzed by energy dispersive X-ray spectroscopy (EDX). This behavior was explained based on that demi and distilled water might be considered as ‘hungry water’ in which it wants to be in equilibrium and will pull ions out of the surrounding metals trying to satisfy its ‘hunger’.

Keywords: corrosion, demineralized water, distilled water, steel alloys

Procedia PDF Downloads 798
538 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures

Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh

Abstract:

Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.

Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra

Procedia PDF Downloads 150
537 Study of Superconducting Patch Printed on Electric-Magnetic Substrates Materials

Authors: Fortaki Tarek, S. Bedra

Abstract:

In this paper, the effects of both uniaxial anisotropy in the substrate and high Tc superconducting patch on the resonant frequency, half-power bandwidth, and radiation patterns are investigated using an electric field integral equation and the spectral domain Green’s function. The analysis has been based on a full electromagnetic wave model with London’s equations and the Gorter-Casimir two-fluid model has been improved to investigate the resonant and radiation characteristics of high Tc superconducting rectangular microstrip patch in the case where the patch is printed on electric-magnetic uniaxially anisotropic substrate materials. The stationary phase technique has been used for computing the radiation electric field. The obtained results demonstrate a considerable improvement in the half-power bandwidth, of the rectangular microstrip patch, by using a superconductor patch instead of a perfect conductor one. Further results show that high Tc superconducting rectangular microstrip patch on the uniaxial substrate with properly selected electric and magnetic anisotropy ratios is more advantageous than the one on the isotropic substrate by exhibiting wider bandwidth and radiation characteristic. This behavior agrees with that discovered experimentally for superconducting patches on isotropic substrates. The calculated results have been compared with measured one available in the literature and excellent agreement has been found.

Keywords: high Tc superconducting microstrip patch, electric-magnetic anisotropic substrate, Galerkin method, surface complex impedance with boundary conditions, radiation patterns

Procedia PDF Downloads 440
536 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis

Authors: Farzad Khajavi

Abstract:

Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.

Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction

Procedia PDF Downloads 200
535 Removal of Hexavalent Chromium from Aqueous Solutions by Biosorption Using Macadamia Nutshells: Effect of Different Treatment Methods

Authors: Vusumzi E. Pakade, Themba D. Ntuli, Augustine E. Ofomaja

Abstract:

Macadamia nutshell biosorbents treated in three different methods (raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)) were investigated for the adsorption of Cr(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis (TGA) revealed that the acid and base treatments modified the surface properties of the sorbents. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent dosage 0.2 g L-1, and concentration 100 mg L-1. The different treatment methods altered the surface characteristics of the sorbents and produced different maximum binding capacities of 42.5, 40.6 and 37.5 mg g-1 for RMN, ATMN and BTMN, respectively. The data was fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms. No single model could clearly explain the data perhaps due to the complexity of process taking place. The kinetic modeling results showed that the process of Cr(VI) biosorption with Macadamia sorbents was better described by a process of chemical sorption in pseudo-second order. These results showed that the three treatment methods yielded different surface properties which then influenced adsorption of Cr(VI) differently.

Keywords: biosorption, chromium(VI), isotherms, Macadamia, reduction, treatment

Procedia PDF Downloads 260
534 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 280
533 Structural Investigation and Hyperfine Interactions of BaBiₓLaₓFe₁₂₋₂ₓO₁₉ (0.0 ≤ X ≤ 0.5) Hexaferrites

Authors: Hakan Gungunes, Ismail A. Auwal, Abdulhadi Baykal, Sagar E. Shirsath

Abstract:

Barium hexaferrite, BaFe₁₂O₁₉, substituted by Bi³⁺ and La³⁺ (BaBiₓLaₓFe₁₂₋₂ₓO₁₉ where 0.0 ≤ x ≤ 0.5) were prepared by solid state synthesis route. The effect of substituted Bi³⁺ and La³⁺ ions on the structure, morphology, magnetic and cation distributions of barium hexaferrite were investigated by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and Mössbauer spectroscopy. XRD powder patterns were refined by the Rietveld analysis method which confirmed the formation of single phase magneto-plumbite structure and the substitution of La³⁺ and Bi³⁺ ions into the lattice of barium ferrite. These results show that both La³⁺ and Bi³⁺ ions completely enter into barium hexaferrite lattice without disturbing the hexagonal ferrite structure. The EDX spectra confirmed the presence of all the constituents in expected elemental percentage. From 57Fe Mössbauer spectroscopy data, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values on Bi and La substitutions have been determined. Cation distribution in the presently investigated hexaferrite system was estimated using the relative area of Mössbauer spectroscopy.

Keywords: hexaferrite, mössbauer, cation distribution, solid state synthesis

Procedia PDF Downloads 368
532 Properties and Antimicrobial Activity of Fish Protein Isolate/Fish Skin Gelatin Film Containing Basil Leaf Essential Oil and Zinc Oxide Nanoparticles

Authors: Yasir Ali Arfat

Abstract:

Composite films based on fish protein isolate (FPI) and fish skin gelatin (FSG) blend incorporated with 50 and 100% (w/w, protein) basil leaf essential oil (BEO) in the absence and presence of 3% (w/w, protein) ZnO nanoparticles (ZnONP) were prepared and characterised. Tensile strength (TS) decreased, whilst elongation at break (EAB) increased as BEO level increased (p < 0.05). However, ZnONP addition resulted in higher TS but lower EAB (p < 0.05). The lowest water vapour permeability (WVP) was observed for the film incorporated with 100% BEO and 3% ZnONP (p < 0.05). BEO and ZnONP incorporation decreased transparency of FPI/FSG films (p < 0.05). FTIR spectra indicated that films added with BEO exhibited higher hydrophobicity. Both BEO and ZnONP had a marked impact on thermal stability of the films. Microstructural study revealed that presence of ZnONP prevented bilayer formation of film containing 100% BEO. FPI/FSG films incorporated with 100% BEO, especially in combination with ZnONP, exhibited strong antibacterial activity against food pathogenic and spoilage bacteria and thus could be used as an active food packaging material to ensure safety and to extend the shelf-life of packaged foods.

Keywords: bionanocomposite, fish protein isolate, fish skin gelatin, basil essential oil, ZnO nanoparticles, antimicrobial packaging

Procedia PDF Downloads 462
531 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 99
530 Preparation and Characterization of Modified ZnO Incorporated into Mesoporous MCM-22 Catalysts and Their Catalytic Performances of Crude Jatropha Oil to Biodiesel

Authors: Bashir Abubakar Abdulkadir, Anita Ramli, Lim Jun Wei, Yoshimitsu Uemura

Abstract:

In this study, the ZnO/MCM-22 catalyst with different ZnO loading were prepared using conventional wet impregnation process and the catalyst activity was tested for biodiesel production from Jatropha oil. The effects of reaction parameters with regards to catalyst activity were investigated. The synthesized catalysts samples were then characterized by X-ray diffraction (XRD) for crystal phase, Brunauer–Emmett–Teller (BET) for surface area, pore volume and pore size, Field Emission Scanning electron microscope attached to energy dispersive x-ray (FESEM/EDX) for morphology and elemental composition and TPD (NH3 and CO2) for basic and acidic properties of the catalyst. The XRD spectra couple with the EDX result shows the presence of ZnO in the catalyst confirming the positive intercalation of the metal oxide into the mesoporous MCM-22. The synthesized catalyst was confirmed to be mesoporous according to BET findings. Also, the catalysts can be considered as a bifunctional catalyst based on TPD outcomes. Transesterification results showed that the synthesized catalyst was highly efficient and effective to be used for biodiesel production from low grade oil such as Jatropha oil and other industrial application where the high fatty acid methyl ester (FAMEs) yield was achieved at moderate reaction conditions. It was also discovered that the catalyst can be used more than five (5) runs with little deactivation confirming the catalyst to be highly active and stable to the heat of reaction.

Keywords: MCM-22, synthesis, transesterification, ZnO

Procedia PDF Downloads 199
529 Design and Characterization of Aromatase Inhibitor Loaded Nanoparticles for the Treatment of Breast Cancer

Authors: Harish K. Chandrawanshi, Mithun S. Rajput, Neelima Choure, Purnima Dey Sarkar, Shailesh Jain

Abstract:

The present research study aimed to fabricate and evaluate biodegradable nanoparticles of aromatase inhibitor letrozole, intended for breast cancer therapy. Letrozole loaded poly(D,L-lactide-co-glycolide acid) nanoparticles were prepared by solvent evaporation method using dichlorometane as solvent (oil phase) and polyvinyl alcohol (PVA) as aqueous phase. Prepared nanoparticles were characterized by particle size, infrared spectra, drug loading efficiency, drug entrapment efficiency and in vitro release and also evaluated for in vivo anticancer activity. The high speed homogenizer was used to produce stable nanoparticles of mean size range 198.35 ± 0.04 nm with high entrapment efficiency (69.86 ± 2.78%). Percentage of drug and homogenization speed significantly influenced the particle size, entrapment efficiency and release (p<0.05). The nanoparticles show significant in vivo anticancer activity against Ehrlich ascites carcinoma in mice. The significant system sustained the release of letrozole drug effectively and further investigation could exhibit its potential usefulness in breast cancer therapy.

Keywords: breast cancer/therapy, letrozole, nanoparticles, PLGA

Procedia PDF Downloads 573
528 Predictive Modelling Approaches in Food Processing and Safety

Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary

Abstract:

Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.

Keywords: predictive modlleing, ann, ai, food

Procedia PDF Downloads 78
527 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening

Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon

Abstract:

The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.

Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver

Procedia PDF Downloads 224
526 Antimicrobial Peptide Produced by Lactococcus garvieae with a Broad Inhibition Spectrum

Authors: Hai Chi, Ibrahim Mehmeti, Kirill Ovchinnikov, Hegle Holo, Ingolf F. Nes, Dzung B. Diep

Abstract:

By using a panel of multiple indicator strains of different bacterial species and genera, we screened a large collection of bacterial isolates (over 1800 isolates) derived from raw milk, for bacteriocin producers with broad inhibition spectra (BIS). Fourteen isolates with BIS were identified, and by 16S rDNA sequencing they were found to belong to Lactococcus garvieae (10 isolates) and Enterococcus feacalis (4 isolates). Further analysis of the ten L. garvieae isolates revealed that they were very similar, if not identical, to each other in metabolic and genetic terms: they had the same fermentation profile on different types of sugars, repetitive sequence-based PCR (rep-PCR) DNA pattern as well as they all had the same inhibition profile towards over 50 isolates of different species. The bacteriocin activity from one of the L. garvieae isolates was assessed further. The bacteriocin which was termed garvicin KS, was found to be heatstable and proteinase-labile and its inhibition spectrum contained many distantly related genera of Firmicutes, comprising most lactic acid bacteria (LAB) as well as problematic species of Bacillus, Listeria, Streptococcus and Staphylococcus and their antibiotic resistant derivatives (e.g. VRE, MRSA). Taken together, the results indicate that this is a potent bacteriocin from L. garvieae and that its very broad inhibition spectrum can be a very useful property for use in food preservation as well as in infection treatments caused by gram-positive pathogens and their antibiotic-derivatives.

Keywords: bacteriocin, lactic acid bacteria, Lactococcus garvieae, antibiotics resistance

Procedia PDF Downloads 234
525 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications

Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf

Abstract:

In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.

Keywords: planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C and Ku

Procedia PDF Downloads 185
524 Ultrasonic Investigation as Tool for Study of Molecular Interaction of 2-Hydroxy Substituted Pyrimidine Derivative at Different Concentrations

Authors: Shradha S. Binani, P. S. Bodke, R. V. Joat

Abstract:

Recent decades have witnessed an exponential growth in the field of acoustical parameters and ultrasound on solid, liquid and gases. Ultrasonic propagation parameters yield valuable information regarding the behavior of liquid systems because intra and intermolecular association, dipolar interaction, complex formation and related structural changes affecting the compressibility of the system which in turn produces variations in the ultrasonic velocity. The acoustic and thermo dynamical parameters obtained in ultrasonic study show that ion-solvation is accompanied by the destruction or enhancement of the solvent structure. In the present paper the ultrasonic velocity (v), density (ρ), viscosity(η) have been measured for the pharmacological important compound 2-hydroxy substituted phenyl pyrimidine derivative (2-hydroxy-4-(4’-methoxy phenyl)-6-(2’-hydroxy-4’-methyl-5’-chlorophenyl)pyrimidine) in ethanol as a solvent by using different concentration at constant room temperature. These experimental data have been used to estimate physical parameter like adiabatic compressibility, intermolecular free length, relaxation time, free volume, specific acoustic impedance, relative association, Wada’s constant, Rao’s constant etc. The above parameters provide information in understanding the structural and molecular interaction between solute-solvent in the drug solution with respect to change in concentration.

Keywords: acoustical parameters, ultrasonic velocity, density, viscosity, 2-hydroxy substituted phenyl pyrimidine derivative

Procedia PDF Downloads 462
523 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films

Authors: N. Kaneva, A. Bojinova, K. Papazova

Abstract:

Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.

Keywords: ZnO thin films, sol-gel, photocatalysis, aging time

Procedia PDF Downloads 374
522 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 255
521 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 153
520 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines

Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović

Abstract:

This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.  

Keywords: wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emmisions, finite element analysis

Procedia PDF Downloads 172
519 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach

Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha

Abstract:

Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.

Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy

Procedia PDF Downloads 99
518 Quranic Recitation Listening Relate to Memory Processing, Language Selectivity and Attentional Process

Authors: Samhani Ismail, Tahamina Begum, Faruque Reza, Zamzuri Idris, Hafizan Juahir, Jafri Malin Abdullah

Abstract:

Holy Quran, a rhymed prosed scripture has a complete literary structure that exemplifies the peak of literary beauty. Memorizing of its verses could enhance one’s memory capacity and cognition while those who are listening to its recitation it is also believed that the Holy Quran alter brainwave producing neuronal excitation engaging with cognitive processes. 28 normal healthy subjects (male =14 & female = 14) were recruited and EEG recording was done using 128-electrode sensor net (Electrical Geosics, Inc.) with the impedance of ≤ 50kΩ. They listened to Sura Fatiha recited by Sheikh Qari Abdul Basit bin Abdus Samad. Arabic news and no sound were chosen as positive and negative control, respectively. The waveform was analysed by Fast Fourier Transform (FFT) to get the power in frequency bands. Bilateral frontal (F7, F8) and temporal region (T7, T8) showed decreased power significantly in alpha wave band in respondent stimulated by Sura Fatihah recitation reflects acoustic attention processing. However, decreased in alpha power in selective attention to memorized, and in familial but not memorized language, reveals the memorial processing in long-term memory. As a conclusion, Quranic recitation relates both cognitive element of memory and language in its listeners and memorizers.

Keywords: auditory stimulation, cognition, EEG, linguistic, memory, Quranic recitation

Procedia PDF Downloads 335
517 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract

Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din

Abstract:

A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.

Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis

Procedia PDF Downloads 196
516 Influence of Hydrogen Ion Concentration on the Production of Bio-Synthesized Nano-Silver

Authors: M.F. Elkady, Sahar Zaki, Desouky Abd-El-Haleem

Abstract:

Silver nanoparticles (AgNPs) are already widely prepared using different technologies. However, there are limited data on the effects of hydrogen ion concentration on nano-silver production. In this investigation, the impact of the pH reaction medium toward the particle size, agglomeration and the yield of the produced bio-synthesized silver were established. Quasi-spherical silver nanoparticles were synthesized through the biosynthesis green production process using the Egyptian E. coli bacterial strain 23N at different pH values. The formation of AgNPs has been confirmed with ultraviolet–visible spectra through identification of their characteristic peak at 410 nm. The quantitative production yield and the orientation planes of the produced nano-silver were examined using X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Quantitative analyses indicated that the silver production yield was promoted at elevated pH regarded to increase the reduction rate of silver precursor through both chemical and biological processes. As a result, number of the nucleus and thus the size of the silver nanoparticles were tunable through changing pH of the reaction system. Accordingly, the morphological structure and size of the produced silver and its aggregates were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. It was considered that the increment in pH value of the reaction media progress the aggregation of silver clusters. However, the presence of stain 23N biomass decreases the possibility of silver aggregation at the pH 7.

Keywords: silver nanoparticles, biosynthesis, reaction media pH, nano-silver characterization

Procedia PDF Downloads 367
515 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 186
514 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 154
513 12-Week Comparative Clinical Trial with Low Dose Phentermine/Topiramate with Liraglutide on Obesity in Korea

Authors: Kyu Rae Lee

Abstract:

The aim of the study is to investigate the clinical efficacy of combination therapeutic modalities using liraglutide (1.2mg/d) add on low-dose phentermine (7.5 mg/d)/topiramate (50mg/d) medication on the obese patient in the bariatric clinic. We assessed the retrospective cohort clinical analyses to the clinical efficacy of medication and combination in the patients who visited the bariatric clinic. We measured all participants’ body fat (bioelectric impedance analysis), weight, height, and the cross-sectional areas of adipose tissues (umbilicus level) after keep fasting for 8 hours at 0, 4, 12 weeks. The design of the study was opened, paired t-test and Wilcoxon test were performed using SPSS for windows (ver.18, IL, USA) for comparison of weight, body fat, and adipose tissues. The participants were one hundred twenty-eight subjects aged 44.67 (1.18) years, 28.95 (0.39) kg/m², and female (82.7%). Their body fat was 40.57 (2.23%), and waist to hip ratio was 0.96 (0.01). The mean cross-sectional area of visceral adipose tissue was 142.59 (7.06) mm², and that of subcutaneous adipose was 274.37 (9.18) mm². 73 of them (57.5%) took medication only, 54 of them took medication with liraglutide for 12 weeks. The subjects in the medication group lost 5.4165 kg, 6.8069%, and those of the combination group did 6.2481 kg, 3.564%. The mean cross-sectional areas of visceral, subcutaneous adipose tissue in the medication group significantly decreased (p=.043), even more in the combination group. (p=.028). Further controlled clinical trials should be considered in the future. We conclude that the low dose of phentermine/topiramate with liraglutide therapeutic modalities would be more effective than phentermine/topiramate medication only in obesity treatment for 12 weeks.

Keywords: low dose phentermine, topiramate, liraglutide, obesity, efficacy

Procedia PDF Downloads 151
512 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 522
511 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 257