Excitation Dependent Luminescence in Cr³+ Doped MgAl₂O₄ Nanocrystals

Authors : Savita, Pargam Vashishtha, Govind Gupta, Ankush Vij, Anup Thakur

Abstract : The ligand field dependent visible as well as NIR emission of the Cr^3 +dopant in spinel hosts has attracted immense attention in tuning the color emitted by the material. In this research, Mg1-xCrxAl₂O₄(x=0.5, 1, 3, 5, and 10 mol%) nanocrystals have been synthesized by solution combustion method. The synthesized nanocrystals possessed a single phase cubic structure. The strong absorption by host lattice defects (antisite defects, F centres) andd-d transitions of Cr^3 + ions lead to radiative emission in the visible and NIR region, respectively. The red-NIR emission in photoluminescence spectra inferred the octahedral symmetry of Cr^3 + ions and anticipated the site distortion by the presence of Cr^3 + clusters and antisite defects in the vicinity of Cr^3 + ions. The thermoluminescence response of UV and γ -irradiated Cr doped MgAl2O4 samples revealed the formation of various shallow and deep defects with doping Cr^3 +ions. The induced structural cation disorder with an increase in doping concentration caused photoluminescence quenching beyond 3 mol% Cr^3 + doping. The color tuning exhibited by Cr doped MgAl₂O₄ nanocrystals by varying Cr^3 + ion concentration and excitation wavelength find its applicability in solid state lighting.

1

Keywords : antisite defects, cation disorder, color tuning, combustion synthesis

Conference Title : ICLMLS 2022 : International Conference on Luminescent Materials and Luminescence Science **Conference Location :** Venice, Italy

Conference Dates : August 16-17, 2022