Search results for: tenofovir nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1450

Search results for: tenofovir nanoparticles

310 Fabrication of Modified Chitosan-Gold Nanoshell with Mercaptopropionic Acid(MPA) for γ-Aminobutyric Acid Detection as a Surface-Enhanced Raman Scattering Substrate

Authors: Bi Wa, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. In this case, the Mercaptopropionic Acid (MPA) is used to modified chitosan –gold nanoshell, which enhances the absorption between GABA and Chitosan-gold nanoshell. The sulfur end of the MPA is linked to gold which is the surface of the chitosan nanoparticles via the very strong S–Au bond, while a functional group (carboxyl group) attached to GABA. The controlling of particles’ size and the surface morphology are also the important factors during the whole experiment. The particle around 100nm is using to link to MPA, and the range of GABA from 1mM to 30mM was detected by the Raman Scattering to obtain the calibrate curve. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced raman scattering

Procedia PDF Downloads 244
309 The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes

Authors: Prajakta Katti, Suryasarathi Bose, S. Kumar

Abstract:

In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix.

Keywords: epoxy, MWNTs, HPEEK-g-MWNTs, tensile properties, nanoindentation, fracture toughness

Procedia PDF Downloads 309
308 Bonding Strength of Adhesive Scarf Joints Improved by Nano-Silica Subjected to Humidity

Authors: B. Paygozar, S.A. Dizaji, A.C. Kandemir

Abstract:

In this study, the effects of the modified adhesive including different concentrations of Nano-silica are surveyed on the bonding strength of the adhesive scarf joints. The nanoparticles are added in two different concentrations, to an epoxy-based two-component structural adhesive, Araldite 2011, to survey the influences of the nanoparticle weight percentage on the failure load of the joints compared to that of the joints manufactured by the neat adhesive. The effects of being exposure to a moist ambience on the joint strength are also investigated for the joints produced of both neat and modified adhesives. For this purpose, an ageing process was carried out on the joints of both neat and improved kinds with variable immersion periods (20, 40 and 60 days). All the specimens were tested under a quasi-static tensile loading of 2 mm/min speed so as to find the quantities of the failure loads. Outcomes indicate that the failure loads of the joints with modified adhesives are measurably higher than that of the joint with neat adhesive, even while being put for a while under a moist condition. Another result points out that humidity lessens the bonding strength of all the joints of both types as the exposure time increases, which can be attributed to the change in the failure mode.

Keywords: bonding strength, humidity, nano-silica, scarf joint

Procedia PDF Downloads 173
307 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies

Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya

Abstract:

In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.

Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer

Procedia PDF Downloads 270
306 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 113
305 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites

Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac

Abstract:

In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.

Keywords: nanocomposites, core-shell, pyrole, surfactant

Procedia PDF Downloads 403
304 Design and Fabrication of Optical Nanobiosensors for Detection of MicroRNAs Involved in Neurodegenerative Diseases

Authors: Mahdi Rahaie

Abstract:

MicroRNAs are a novel class of small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. To produce sensitive, simple and cost-effective assays for microRNAs, detection is in urgent demand due to important role of these biomolecules in progression of human disease such as Alzheimer’s, Multiple sclerosis, and some other neurodegenerative diseases. Herein, we report several novel, sensitive and specific microRNA nanobiosensors which were designed based on colorimetric and fluorescence detection of nanoparticles and hybridization chain reaction amplification as an enzyme-free amplification. These new strategies eliminate the need for enzymatic reactions, chemical changes, separation processes and sophisticated equipment whereas less limit of detection with most specify are acceptable. The important features of these methods are high sensitivity and specificity to differentiate between perfectly matched, mismatched and non-complementary target microRNAs and also decent response in the real sample analysis with blood plasma. These nanobiosensors can clinically be used not only for the early detection of neuro diseases but also for every sickness related to miRNAs by direct detection of the plasma microRNAs in real clinical samples, without a need for sample preparation, RNA extraction and/or amplification.

Keywords: hybridization chain reaction, microRNA, nanobiosensor, neurodegenerative diseases

Procedia PDF Downloads 151
303 Surfactant-Free O/W-Emulsion as Drug Delivery System

Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk

Abstract:

Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.

Keywords: emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability

Procedia PDF Downloads 488
302 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers

Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz

Abstract:

Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.

Keywords: electrospinning, nanofibers, montmorillonite, materials science

Procedia PDF Downloads 345
301 Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay

Authors: A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index.

Keywords: nanobentonite particles, clayey soil, unconfined compression stress, soil improvement.

Procedia PDF Downloads 122
300 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies

Authors: Manal Kamel, Sara Maher

Abstract:

Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.

Keywords: COVID 19, diagnosis, ELISA, nanobodies

Procedia PDF Downloads 134
299 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods

Authors: Jamshid Hussain, Kuen Song Lin

Abstract:

For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.

Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS

Procedia PDF Downloads 8
298 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.

Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology

Procedia PDF Downloads 380
297 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 89
296 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 254
295 Detection of Telomerase Activity as Cancer Biomarker Using Nanogap-Rich Au Nanowire SERS Sensor

Authors: G. Eom, H. Kim, A. Hwang, T. Kang, B. Kim

Abstract:

Telomerase activity is overexpressed in over 85% of human cancers while suppressed in normal somatic cells. Telomerase has been attracted as a universal cancer biomarker. Therefore, the development of effective telomerase activity detection methods is urgently demanded in cancer diagnosis and therapy. Herein, we report a nanogap-rich Au nanowire (NW) surface-enhanced Raman scattering (SERS) sensor for detection of human telomerase activity. The nanogap-rich Au NW SERS sensors were prepared simply by uniformly depositing nanoparticles (NPs) on single-crystalline Au NWs. We measured SERS spectra of methylene blue (MB) from 60 different nanogap-rich Au NWs and obtained the relative standard deviation (RSD) of 4.80%, confirming the superb reproducibility of nanogap-rich Au NW SERS sensors. The nanogap-rich Au NW SERS sensors enable us to detect telomerase activity in 0.2 cancer cells/mL. Furthermore, telomerase activity is detectable in 7 different cancer cell lines whereas undetectable in normal cell lines, which suggest the potential applicability of nanogap-rich Au NW SERS sensor in cancer diagnosis. We expect that the present nanogap-rich Au NW SERS sensor can be useful in biomedical applications including a diverse biomarker sensing.

Keywords: cancer biomarker, nanowires, surface-enhanced Raman scattering, telomerase

Procedia PDF Downloads 349
294 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 188
293 Protein Derived Biodegradable Food Packaging Material from Poultry By-Product

Authors: Muhammad Zubair, Aman Ullah, Jianping Wu

Abstract:

During the last decades, petroleum derived synthetic polymers like polyethylene terephthalate, polyvinylchloride, polyethylene, polypropylene and polystyrene has extensively been used in the field of food packaging and mostly are non-degradable. Biopolymers are a good fit for single-use or short-lived products such as food packaging. Spent hens, a poultry by-product which is of little economic value and their disposal are environmentally harmful. Through current study, we have explored the possibility to transform proteins from spent fowl into green food packaging material. Proteins from spent fowl were extracted within 1 hour using pH shift method with recovery of about 74%. Different plasticizers were tried like glycerol, sorbitol, glutaraldehyde, 1,2 ethylene glycol and 1,2 butanediol. Glycerol was the best plasticizer among all these plasticizers. A naturally occurring and non-toxic cross-linking agent, chitosan, was used to form the chitosan/glycerol/protein blend by casting and compression molding techniques. The mechanical properties were characterized using tensile strength analyzer. The nano-reinforcements with homogeneous dispersion of nanoparticles lead to improved physical properties suggesting that these materials have great potential for food packaging applications.

Keywords: differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, spent hen

Procedia PDF Downloads 276
292 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb

Abstract:

Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.

Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR

Procedia PDF Downloads 443
291 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 358
290 Entropy Generation Analysis of Cylindrical Heat Pipe Using Nanofluid

Authors: Morteza Ghanbarpour, Rahmatollah Khodabandeh

Abstract:

In this study, second law of thermodynamic is employed to evaluate heat pipe thermal performance. In fact, nanofluids potential to decrease the entropy generation of cylindrical heat pipes are studied and the results are compared with experimental data. Some cylindrical copper heat pipes of 200 mm length and 6.35 mm outer diameter were fabricated and tested with distilled water and water based Al2O3 nanofluids with volume concentrations of 1-5% as working fluids. Nanofluids are nanotechnology-based colloidal suspensions fabricated by suspending nanoparticles in a base liquid. These fluids have shown potential to enhance heat transfer properties of the base liquids used in heat transfer application. When the working fluid undergoes between different states in heat pipe cycle the entropy is generated. Different sources of irreversibility in heat pipe thermodynamic cycle are investigated and nanofluid effect on each of these sources is studied. Both experimental and theoretical studies reveal that nanofluid is a good choice to minimize the entropy generation in heat pipe thermodynamic cycle which results in higher thermal performance and efficiency of the system.

Keywords: heat pipe, nanofluid, thermodynamics, entropy generation, thermal resistance

Procedia PDF Downloads 469
289 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen

Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes

Abstract:

In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.

Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles

Procedia PDF Downloads 262
288 Exchange Bias in Ceramics: From Polyol Made CoFe₂O₄-core@CoO-Shell NPs to Nanostructured Ceramics

Authors: N. Flores-Martinez, G. Franceschin, T. Gaudisson, J.-M. Greneche, R. Valenzuela-Monjaras, S. Ammar

Abstract:

Tailoring bulk materials keeping their nanoscale properties is the daydream of material scientists. But especially in magnetism, this single desire can revolutionize our everyday life. Now, thanks to the methods of synthesis, based on the combination of colloidal chemistry (CC) to flash sintering (FS), customizing magnets becomes each time more 'easy', 'cheap' and 'clean'. Although by CC we can obtain straightway nanopowders with good magnetic featuring, like exchange bias (EB) phenomenon, it does not result so attractive for applications. Since a solid material is simple to manipulate and integrate in a device, many consolidation methods have been tested aiming to keep the nanopowders characteristics after consolidation. Unfortunately, the lack of structural crystalline arrangement and the grain growth worsen the magnetic properties. In this work, we exhibit, for the first-time author’s best knowledge, the EB in sintered ceramics, starting from CoFe₂O₄-core@CoO-shell NPs obtained by CC. Despite the fact that EB field is about 28 mT in ceramics and it is not yet considered for applications, this work opens an alternative in the permanent magnets fabrication through a FS method, the spark plasma sintering, starting from CC synthesized nanopowders.

Keywords: core-shell nanoparticles, exchange bias, nanostructured ceramics, spark plasma sintering

Procedia PDF Downloads 148
287 Preparation of Polylactide Nanoparticles by Supercritical Fluid Technology

Authors: Jakub Zágora, Daniela Plachá, Karla Čech Barabaszová, Sylva Holešová, Roman Gábor, Alexandra Muñoz Bonilla, Marta Fernández García

Abstract:

The development of new antimicrobial materials that are not toxic to higher living organisms is a major challenge today. Newly developed materials can have high application potential in biomedicine, coatings, packaging, etc. A combination of commonly used biopolymer polylactide with cationic polymers seems to be very successful in the fight against antimicrobial resistance [1].PLA will play a key role in fulfilling the intention set out in the New Deal announced by the EU commission, as it is a bioplastic that is easily degradable, recyclable, and mass-produced. Also, the development of 3D printing in the context of this initiative, and the actual use of PLA as one of the main materials used for this printing, make the technology around the preparation and modification of PLA quite logical. Moreover, theenvironmentally friendly and energy saving technology like supercritical fluid process (SFP) will be used for their preparation. In a first approach, polylactide nano- and microparticles and structures were prepared by supercritical fluid extraction. The RESS (rapid expansion supercritical fluid solution) method is easier to optimize and shows better particle size control. On the contrary, a highly porous structure was obtained using the SAS (supercritical antisolvent) method. In a second part, the antimicrobial biobased polymer was introduced by SFP.

Keywords: polylactide, antimicrobial polymers, supercritical fluid technology, micronization

Procedia PDF Downloads 188
286 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 84
285 The Impact of Artificial Intelligence on Textiles Technology

Authors: Ramy Kamel Fekrey Gadelrab

Abstract:

Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.

Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design

Procedia PDF Downloads 48
284 Role of Nano-Technology on Remediation of Poly- and Perfluoroalkyl Substances Contaminated Soil and Ground Water

Authors: Leila Alidokht

Abstract:

PFAS (poly- and perfluoroalkyl substances) are a large collection of environmentally persistent organic chemicals of industrial origin that have a negative influence on human health and ecosystems. Many distinct PFAS are being utilized in a wide range of applications (on the order of thousands), and there is no comprehensive source of information on the many different compounds and their roles in diverse applications. Facilities are increasingly looking into ways to reduce waste from cleanup projects. PFAS are widespread in the environment, have been found in a wide range of human biomonitoring investigations, and are a rising source of regulatory concern for federal, state, and local governments. Nanotechnology has the potential to contribute considerably to the creation of a cleaner, greener technologies with considerable environmental and health benefits. Nanotechnology approaches are being studied for their potential to provide pollution management and mitigation options, as well as to increase the effectiveness of standard environmental cleanup procedures. Diversified nanoparticles have shown useful in removing certain pollutants from their original environment, such as sewage spills and landmines. Furthermore, they have a low hazardous effect during production rates and can thus be thoroughly explored in the future to make them more compatible with lower production costs.

Keywords: PFOS, PFOA, PFAS, soil remediation

Procedia PDF Downloads 110
283 Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi

Authors: Kamel A. Abd-Elsalam, Alexei R. Khokhlov

Abstract:

Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used.

Keywords: biohybrids, biocides, bioagent, plant pathogenic fungi

Procedia PDF Downloads 255
282 A Self-Heating Gas Sensor of SnO2-Based Nanoparticles Electrophoretic Deposited

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Sonia M. Zanetti, Mario Cilense, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

The contamination of the environment has been one of the biggest problems of our time, mostly due to developments of many industries. SnO2 is an n-type semiconductor with band gap about 3.5 eV and has its electrical conductivity dependent of type and amount of modifiers agents added into matrix ceramic during synthesis process, allowing applications as sensing of gaseous pollutants on ambient. The chemical synthesis by polymeric precursor method consists in a complexation reaction between tin ion and citric acid at 90 °C/2 hours and subsequently addition of ethyleneglycol for polymerization at 130 °C/2 hours. It also prepared polymeric resin of zinc, cobalt and niobium ions. Stoichiometric amounts of the solutions were mixed to obtain the systems (Zn, Nb)-SnO2 and (Co, Nb) SnO2 . The metal immobilization reduces its segregation during the calcination resulting in a crystalline oxide with high chemical homogeneity. The resin was pre-calcined at 300 °C/1 hour, milled in Atritor Mill at 500 rpm/1 hour, and then calcined at 600 °C/2 hours. X-Ray Diffraction (XDR) indicated formation of SnO2 -rutile phase (JCPDS card nº 41-1445). The characterization by Scanning Electron Microscope of High Resolution showed spherical ceramic powder nanostructured with 10-20 nm of diameter. 20 mg of SnO2 -based powder was kept in 20 ml of isopropyl alcohol and then taken to an electrophoretic deposition (EPD) system. The EPD method allows control the thickness films through the voltage or current applied in the electrophoretic cell and by the time used for deposition of ceramics particles. This procedure obtains films in a short time with low costs, bringing prospects for a new generation of smaller size devices with easy integration technology. In this research, films were obtained in an alumina substrate with interdigital electrodes after applying 2 kV during 5 and 10 minutes in cells containing alcoholic suspension of (Zn, Nb)-SnO2 and (Co, Nb) SnO2 of powders, forming a sensing layer. The substrate has designed integrated micro hotplates that provide an instantaneous and precise temperature control capability when a voltage is applied. The films were sintered at 900 and 1000 °C in a microwave oven of 770 W, adapted by the research group itself with a temperature controller. This sintering is a fast process with homogeneous heating rate which promotes controlled growth of grain size and also the diffusion of modifiers agents, inducing the creation of intrinsic defects which will change the electrical characteristics of SnO2 -based powders. This study has successfully demonstrated a microfabricated system with an integrated micro-hotplate for detection of CO and NO2 gas at different concentrations and temperature, with self-heating SnO2 - based nanoparticles films, being suitable for both industrial process monitoring and detection of low concentrations in buildings/residences in order to safeguard human health. The results indicate the possibility for development of gas sensors devices with low power consumption for integration in portable electronic equipment with fast analysis. Acknowledgments The authors thanks to the LMA-IQ for providing the FEG-SEM images, and the financial support of this project by the Brazilian research funding agencies CNPq, FAPESP 2014/11314-9 and CEPID/CDMF- FAPESP 2013/07296-2.

Keywords: chemical synthesis, electrophoretic deposition, self-heating, gas sensor

Procedia PDF Downloads 275
281 Magnetic Single-Walled Carbon Nanotubes (SWCNTs) as Novel Theranostic Nanocarriers: Enhanced Targeting and Noninvasive MRI Tracking

Authors: Achraf Al Faraj, Asma Sultana Shaik, Baraa Al Sayed

Abstract:

Specific and effective targeting of drug delivery systems (DDS) to cancerous sites remains a major challenge for a better diagnostic and therapy. Recently, SWCNTs with their unique physicochemical properties and the ability to cross the cell membrane show promising in the biomedical field. The purpose of this study was first to develop a biocompatible iron oxide tagged SWCNTs as diagnostic nanoprobes to allow their noninvasive detection using MRI and their preferential targeting in a breast cancer murine model by placing an optimized flexible magnet over the tumor site. Magnetic targeting was associated to specific antibody-conjugated SWCNTs active targeting. The therapeutic efficacy of doxorubicin-conjugated SWCNTs was assessed, and the superiority of diffusion-weighted (DW-) MRI as sensitive imaging biomarker was investigated. Short Polyvinylpyrrolidone (PVP) stabilized water soluble SWCNTs were first developed, tagged with iron oxide nanoparticles and conjugated with Endoglin/CD105 monoclonal antibodies. They were then conjugated with doxorubicin drugs. SWCNTs conjugates were extensively characterized using TEM, UV-Vis spectrophotometer, dynamic light scattering (DLS) zeta potential analysis and electron spin resonance (ESR) spectroscopy. Their MR relaxivities (i.e. r1 and r2*) were measured at 4.7T and their iron content and metal impurities quantified using ICP-MS. SWCNTs biocompatibility and drug efficacy were then evaluated both in vitro and in vivo using a set of immunological assays. Luciferase enhanced bioluminescence 4T1 mouse mammary tumor cells (4T1-Luc2) were injected into the right inguinal mammary fat pad of Balb/c mice. Tumor bearing mice received either free doxorubicin (DOX) drug or SWCNTs with or without either DOX or iron oxide nanoparticles. A multi-pole 10x10mm high-energy flexible magnet was maintained over the tumor site during 2 hours post-injections and their properties and polarity were optimized to allow enhanced magnetic targeting of SWCNTs toward the primary tumor site. Tumor volume was quantified during the follow-up investigation study using a fast spin echo MRI sequence. In order to detect the homing of SWCNTs to the main tumor site, susceptibility-weighted multi-gradient echo (MGE) sequence was used to generate T2* maps. Apparent diffusion coefficient (ADC) measurements were also performed as a sensitive imaging biomarker providing early and better assessment of disease treatment. At several times post-SWCNT injection, histological analysis were performed on tumor extracts and iron-loaded SWCNT were quantified using ICP-MS in tumor sites, liver, spleen, kidneys, and lung. The optimized multi-poles magnet revealed an enhanced targeting of magnetic SWCNTs to the primary tumor site, which was found to be much higher than the active targeting achieved using antibody-conjugated SWCNTs. Iron-loading allowed their sensitive noninvasive tracking after intravenous administration using MRI. The active targeting of doxorubicin through magnetic antibody-conjugated SWCNTs nanoprobes was found to considerably decrease the primary tumor site and may have inhibited the development of metastasis in the tumor-bearing mice lung. ADC measurements in DW-MRI were found to significantly increase in a time-dependent manner after the injection of DOX-conjugated SWCNTs complexes.

Keywords: single-walled carbon nanotubes, nanomedicine, magnetic resonance imaging, cancer diagnosis and therapy

Procedia PDF Downloads 329