Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16

Search results for: ozonation

16 Heterogeneous Catalytic Ozonation of Diethyl Phthalate

Authors: Chedly Tizaoui, Hussain Mohammed, Lobna Mansouri, Nidal Hilal, Latifa Bousselmi

Abstract:

The degradation of diethyl phthalate (DEP) was studied using heterogeneous catalytic ozonation. Activated carbon was used as a catalyst. The degradation of DEP with ozone alone was slow while catalytic ozonation increased degradation rates. Second-order reaction kinetics was used to describe the experimental data, and the corresponding rate constant values were 1.19 and 3.94 M-1.s-1 for ozone and ozone/activated carbon respectively.

Keywords: ozone, heterogeneous catalytic ozonation, diethyl phthalate, endocrine disrupting chemicals

Procedia PDF Downloads 255
15 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water

Authors: S. Shanthi

Abstract:

Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.

Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon

Procedia PDF Downloads 179
14 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 115
13 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies

Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya

Abstract:

In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.

Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer

Procedia PDF Downloads 131
12 A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Ralph Chadeesingh, Caryn Jones, David Oakley, Judy Lee, Devendra Saroj

Abstract:

Current industrialized livestock agriculture is growing every year leading to an increase in the generation of wastewater that varies considerably in terms of organic content and microbial population. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-filtration-ozonation system was used to treat a pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process, followed by a filtration step (4-7 µm) and using ozone as tertiary treatment. An average reduction of 93% and 98% was achieved for Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD), respectively, obtaining final values of 128 mg/L COD and 12 mg/L BOD. For the Total Suspended Solids (TSS), the average reduction increased to 99% in the same system, reducing the final value down to 3 mg/L. Additionally, 98% reduction in Phosphorus (P) and a complete inactivation of Total Coliforms (TC) was obtained after 17 min ozonation time. For Total Viable Counts (TVC), a drastic reduction was observed with 30 min ozonation time (6 log inactivation) at an ozone dose of 71 mg O3/L. Overall, the combined process was sufficient to meet discharge requirements without further treatment for the measured parameters (COD, BOD, TSS, P, TC, and TVC).

Keywords: abattoir waste water, activated sludge, ozone, waste water treatment

Procedia PDF Downloads 210
11 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation

Authors: Chikang Wang, Jhongjheng Jian, Poming Huang

Abstract:

Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.

Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline

Procedia PDF Downloads 165
10 Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System

Authors: Tshilenge Kabongo, John Kabuba

Abstract:

The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.

Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment

Procedia PDF Downloads 56
9 Inactivation of Root-Knot Nematode Eggs Meloidogyne enterolobii in Irrigation Water Treated with Ozone

Authors: I. A. Landa-Fernandez, I. Monje-Ramirez, M. T. Orta-Ledesma

Abstract:

Every year plant-parasitic nematodes diminish the yield of high-value crops worldwide causing important economic losses. Currently, Meloidogyne enterolobii has increased its importance due to its high aggressiveness, increasing geographical distribution and host range. Root-knot nematodes inhabit the rhizosphere soil around plant roots. However, they can come into contact with irrigation water. Thus, plant-parasitic nematodes can be transported by water, as eggs or juveniles. Due to their high resistance, common water disinfection methods are not effective for inactivating these parasites. Ozone is the most effective disinfectant for microbial inactivation. The objective of this study is to demonstrate that ozone treatment is an alternative method control in irrigation water of the root-knot nematode M. enterolobii. It has been shown that ozonation is an effective treatment for the inactivation of protozoan cysts and oocysts (Giardia and Cryptosporidium) and for other species of the genus Meloidogyne (M. incognita), but not for the enterolobii specie. In this study, the strain of M. enterolobii was isolated from tomatoes roots. For the tests, eggs were used and were inoculated in water with similar characteristics of irrigation water. Subsequently, the disinfection process was carried out in an ozonation unit. The performance of the treatments was evaluated through the egg's viability by assessing its structure by optical microscopy. As a result of exposure to ozone, the viability of the nematode eggs was reduced practically in its entirety; with dissolved ozone levels in water close to the standard concentration (equal to 0.4 mgO₃/L), but with high contact times (greater than 4 min): 0.2 mgO₃/L for 15 minutes or 0.55 mgO₃/L for 10 minutes. Additionally, the effect of temperature, alkalinity and organic matter of the water was evaluated. Ozonation is effective and a promising alternative for the inactivation of nematodes in irrigation water, which could contribute to diminish the agricultural losses caused by these organisms.

Keywords: inactivation process, irrigation water treatment, ozonation, plant-parasite nematodes

Procedia PDF Downloads 91
8 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 65
7 Assessment of Quality of Drinking Water in Residential Houses of Kuwait by Using GIS Method

Authors: Huda Aljabi

Abstract:

The existence of heavy metals similar to cadmium, arsenic, lead and mercury in the drinking water be able to be a threat to public health. The amount of the substances of these heavy metals in drinking water has expected importance. The National Primary Drinking Water Regulations have set limits for the concentrations of these elements in drinking water because of their toxicity. Furthermore, bromate shaped during the disinfection of drinking water by Ozonation can also be a health hazard. The Paper proposed here will concentrate on the compilation of all available data and information on the presence of trace metals and bromate in the drinking water at residential houses distributed over different areas in Kuwait. New data will also be collected through a sampling of drinking water at some of the residential houses present in different areas of Kuwait and their analysis for the contents of trace metals and bromate. The collected data will be presented on maps showing the distribution of these metals and bromate in the drinking water of Kuwait. Correlation among different chemical parameters will also be investigated using the GRAPHER software. This will help both the Ministry of Electricity and Water (MEW) and the Ministry of Health (MOH) in taking corrective measures and also in planning the infrastructure activities for the future.

Keywords: bromate, ozonation, GIS, heavy metals

Procedia PDF Downloads 74
6 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell

Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses

Abstract:

Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.

Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification

Procedia PDF Downloads 40
5 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides

Authors: María R. Contreras, Diana Endara

Abstract:

Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.

Keywords: catalysis, cyanide, LDHs, mining

Procedia PDF Downloads 76
4 Ultrasonic Treatment of Baker’s Yeast Effluent

Authors: Emine Yılmaz, Serap Fındık

Abstract:

Baker’s yeast industry uses molasses as a raw material. Molasses is end product of sugar industry. Wastewater from molasses processing presents large amount of coloured substances that give dark brown color and high organic load to the effluents. The main coloured compounds are known as melanoidins. Melanoidins are product of Maillard reaction between amino acid and carbonyl groups in molasses. Dark colour prevents sunlight penetration and reduces photosynthetic activity and dissolved oxygen level of surface waters. Various methods like biological processes (aerobic and anaerobic), ozonation, wet air oxidation, coagulation/flocculation are used to treatment of baker’s yeast effluent. Before effluent is discharged adequate treatment is imperative. In addition to this, increasingly stringent environmental regulations are forcing distilleries to improve existing treatment and also to find alternative methods of effluent management or combination of treatment methods. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs ultrasound resulting in cavitation phenomena. In this study, decolorization of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator used for this study. Its operating frequency is 20 kHz. TiO2-ZnO catalyst has been used as sonocatalyst. The effects of molar proportion of TiO2-ZnO, calcination temperature and time, catalyst amount were investigated on the decolorization of baker’s yeast effluent. The results showed that prepared composite TiO2-ZnO with 4:1 molar proportion treated at 700°C for 90 min provides better result. Initial decolorization rate at 15 min is 3% without catalyst, 14,5% with catalyst treated at 700°C for 90 min respectively.

Keywords: baker’s yeast effluent, decolorization, sonocatalyst, ultrasound

Procedia PDF Downloads 359
3 Textile Wastewater Ecotoxicity Abatement after Aerobic Granular Sludge Treatment and Advanced Oxidation Process

Authors: Ana M. T. Mata, Alexiane Ligneul

Abstract:

Textile effluents are usually heavily loaded with organic carbon and color compounds, the latter being azo dyes in an estimated 70% of the case effluent posing a major challenge in environmental protection. In this study, the ecotoxicity of simulated textile effluent after biological treatment with anaerobic and aerobic phase (aerobic granular sludge, AGS) and after advanced oxidation processes (AOP) namely ozonation and UV irradiation as post-treatment, were tested to evaluate the fitness of this treatments for ecotoxicity abatement. AGS treatment achieved an 80% removal in both COD and color. AOP was applied with the intention to mineralize the metabolites resulting from biodecolorization of the azo dye Acid Red 14, especially the stable aromatic amine (4-amino-1-naphthalenesulfonic acid, 4A1NS). The ecotoxicity evaluation was based on growth inhibition of the algae Pseudokirchneriella subcapitata following OECD TG 201 except regarding the medium, MBL medium was used instead. Five replicate control cultures and samples were performed with an average STD of 2.7% regarding specific algae growth rate determination. It was found that untreated textile effluent holds an inhibition of specific growth rate of 82%. AGS treatment by itself is able to lower ecotoxicity to 53%. This is probably due to the high color removal of the treatment. AOP post-treatment with Ozone and UV irradiation improves the ecotoxicity abatment to 49 and 43% inhibition respectively, less significantly than previously thought. Since over 85% of 4A1NS was removed by either of the AOP (followed by HPLC), an individual ecotoxicity test of 4A1NS was performed showing that 4A1NS does not inhibit algae growth (0% inhibition). It was concluded that AGS treatment is able by itself to achieve a significant ecotoxicity abatement of textile effluent. The cost-benefit of AOP as a post-treatment have to be better accessed since their application resulted in an improvement of only 10% regarding ecotoxicity effluent removal. It was also found that the 4A1NS amine had no apparent effect on ecotoxicity. Further studies will be conducted to study where ecotoxicity is coming from after AGS biological treatment and how to eliminate it.

Keywords: textile wastewate, ecotoxicity, aerobic granular sludge, AOP

Procedia PDF Downloads 105
2 Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate.

Keywords: adsorption, breakthrough curve, clay, congo red, fixed bed column, regeneration

Procedia PDF Downloads 240
1 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 211