Search results for: boron carbide coatings
161 Tailoring Polycrystalline Diamond for Increasing Earth-Drilling Challenges
Authors: Jie Chen, Chris Cheng, Kai Zhang
Abstract:
Polycrystalline diamond compact (PDC) cutters with a polycrystalline diamond (PCD) table supported by a cemented tungsten carbide substrate have been widely used for earth-drilling tools in the oil and gas industry. Both wear and impact resistances are key figure of merits of PDC cutters, and they are closely related to the microstructure of the PCD table. As oil and gas exploration enters deeper, harder, and more complex formations, plus increasing requirement of accelerated downhole drilling speed and drilling cost reduction, current PDC cutters face unprecedented challenges for maintaining a longer drilling life than ever. Excessive wear on uneven hard formations, spalling, chipping, and premature fracture due to impact loads are common failure modes of PDC cutters in the field. Tailoring microstructure of the PCD table is one of the effective approaches to improve the wear and impact resistances of PDC cutters, along with other factors such as cutter geometry and bit design. In this research, cross-sectional microstructure, fracture surface, wear surface, and elemental composition of PDC cutters were analyzed using scanning electron microscopy (SEM) with both backscattered electron and secondary electron detectors, and energy dispersive X-ray spectroscopy (EDS). The microstructure and elemental composition were further correlated with the wear and impact resistances of corresponding PDC cutters. Wear modes and impact toughening mechanisms of state-of-the-art PDCs were identified. Directions to further improve the wear and impact resistances of PDC cutters were proposed.Keywords: fracture surface, microstructure, polycrystalline diamond, PDC, wear surface
Procedia PDF Downloads 53160 A Study of Heavy Hydrocarbons Upgrading by Microwave Pyrolysis
Authors: Thanida Sritangthong, Suksun Amornraksa
Abstract:
By-product upgrading is crucial in hydrocarbon industries as it can increase overall profit margin of the business. Microwave-assisted pyrolysis is relatively new technique which induces heat directly to raw materials. This results in a more energy saving and more energy-efficient process. It is also a promising method to enhance and accelerate chemical reactions, thus reducing the pyrolysis reaction time and increasing the quality of value-added products from different kinds of feedstocks. In this study, upgrading opportunity of fuel oil by-product from an olefins plant is investigated by means of microwave pyrolysis. The experiment was conducted in a lab-scale quartz reactor placed inside a 1,100 watts household microwave oven. Operating temperature was varied from 500 to 900C to observe the consequence on the quality of pyrolysis products. Several microwave receptors i.e. activated carbon, silicon carbide (SiC) and copper oxide (CuO) were used as a material to enhance the heating and reaction in the reactor. The effect of residence time was determined by adjusting flow rate of N2 carrier gas. The chemical composition and product yield were analyzed by using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The results showed that hydrogen, methane, ethylene, and ethane were obtained as the main gaseous products from all operating temperatures while the main liquid products were alkane, cycloalkane and polycyclic aromatic groups. The results indicated that microwave pyrolysis has a potential to upgrade low value hydrocarbons to high value products.Keywords: fuel oil, heavy hydrocarbons, microwave pyrolysis, pyrolysis
Procedia PDF Downloads 319159 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method
Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh
Abstract:
This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength
Procedia PDF Downloads 353158 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 503157 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 18156 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys
Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze
Abstract:
At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys
Procedia PDF Downloads 144155 Thermochemical Study of the Degradation of the Panels of Wings in a Space Shuttle by Utilization of HSC Chemistry Software and Its Database
Authors: Ahmed Ait Hou
Abstract:
The wing leading edge and nose cone of the space shuttle are fabricated from a reinforced carbon/carbon material. This material attains its durability from a diffusion coating of silicon carbide (SiC) and a glass sealant. During re-entry into the atmosphere, this material is subject to an oxidizing high-temperature environment. The use of thermochemical calculations resulting at the HSC CHEMISTRY software and its database allows us to interpret the phenomena of oxidation and chloridation observed on the wing leading edge and nose cone of the space shuttle during its mission in space. First study is the monitoring of the oxidation reaction of SiC. It has been demonstrated that thermal oxidation of the SiC gives the two compounds SiO₂(s) and CO(g). In the extreme conditions of very low oxygen partial pressures and high temperatures, there is a reaction between SiC and SiO₂, leading to SiO(g) and CO(g). We had represented the phase stability diagram of Si-C-O system calculated by the use of the HSC Chemistry at 1300°C. The principal characteristic of this diagram of predominance is the line of SiC + SiO₂ coexistence. Second study is the monitoring of the chloridation reaction of SiC. The other problem encountered in addition to oxidation is the phenomenon of chloridation due to the presence of NaCl. Indeed, after many missions, the leading edge wing surfaces have exhibited small pinholes. We have used the HSC Chemistry database to analyze these various reactions. Our calculations concorde with the phenomena we announced in research work resulting in NASA LEWIS Research center.Keywords: thermochchemicals calculations, HSC software, oxidation and chloridation, wings in space
Procedia PDF Downloads 125154 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron
Authors: Liqiang Gong, Hanguang Fu
Abstract:
In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations
Procedia PDF Downloads 66153 A Neural Network System for Predicting the Hardness of Titanium Aluminum Nitrite (TiAlN) Coatings
Authors: Omar M. Elmabrouk
Abstract:
The cutting tool, in the high-speed machining process, is consistently dealing with high localized stress at the tool tip, tip temperature exceeds 800°C and the chip slides along the rake face. These conditions are affecting the tool wear, the cutting tool performances, the quality of the produced parts and the tool life. Therefore, a thin film coating on the cutting tool should be considered to improve the tool surface properties while maintaining its bulks properties. One of the general coating processes in applying thin film for hard coating purpose is PVD magnetron sputtering. In this paper, the prediction of the effects of PVD magnetron sputtering coating process parameters, sputter power in the range of (4.81-7.19 kW), bias voltage in the range of (50.00-300.00 Volts) and substrate temperature in the range of (281.08-600.00 °C), were studied using artificial neural network (ANN). The results were compared with previously published results using RSM model. It was found that the ANN is more accurate in prediction of tool hardness, and hence, it will not only improve the tool life of the tool but also significantly enhances the efficiency of the machining processes.Keywords: artificial neural network, hardness, prediction, titanium aluminium nitrate coating
Procedia PDF Downloads 554152 Optimization of Bio-Based Mixture of Canarium Luzonicum and Calcium Oxide as Coating Material for Reinforcing Steel Bars
Authors: Charizza D. Montarin, Daryl Jae S. Sigue, Gilford Estores
Abstract:
Philippines was moderately vulnerable to corrosion and to prevent this problem, surface coating should be applied. The main objective of this research was to develop and optimize a bio-based mixture of Pili Resin and Lime as Coating Materials. There are three (3) factors to be considered in choosing the best coating material such as chemical adhesion, friction, and the bearing/shear against the steel bar-concrete interface. Fortunately, both proportions of the Bio-based coating materials (50:50 and 65:35) do not have red rust formation complying with ASTM B117 but failed in terms of ASTM D 3359. Splitting failures of concrete were observed in the Unconfined Reinforced Concrete Samples. All of the steel bars (uncoated and coated) surpassed the Minimum Bond strength (NSCP 2015) about 203% to 285%. The experiments were about 1% to 3% of the results from the ANSYS Simulations with and without Salt Spray Test. Using the bio-based and epoxy coatings, normal splitting strengths were declined. However, there has no significant difference between the results. Thus, the bio-based coating materials can be used as an alternative for the epoxy coating materials and it was highly recommended for Low – Rise Building only.Keywords: Canarium luzonicum, calcium oxide, corrosion, finite element simulations
Procedia PDF Downloads 324151 Acid-Responsive Polymer Conjugates as a New Generation of Corrosion Protecting Materials
Authors: Naruphorn Dararatana, Farzad Seidi, Daniel Crespy
Abstract:
Protection of metals is a critical issue in industry. The annual cost of corrosion in the world is estimated to be about 2.5 trillion dollars and continuously increases. Therefore, there is a need for developing novel protection approaches to improve corrosion protection. We designed and synthesized smart polymer/corrosion inhibitor conjugates as new generations of corrosion protecting materials. Firstly, a polymerizable acrylate derivative of 8-hydroxyquinoline (8HQ), an effective corrosion inhibitor, containing acid-labile β-thiopropionate linkage was prepared in three steps. Then, it was copolymerized with ethyl acrylate in the presence of 1,1′-azobis(cyclohexanecarbonitrile) (ABCN) by radical polymerization. Nanoparticles with an average diameter of 140 nm were prepared from the polymer conjugate by the miniemulsion-solvent evaporation process. The release behavior of 8HQ from the the nanoparticles was studied in acidic (pH 3.5) and neutral media (pH 7.0). The release profile showed a faster release of 8HQ in acidic medium in comparison with neutral medium. Indeed 100% of 8HQ was released after 14 days in acidic medium whereas only around 15% of 8HQ was released during the same period at neutral pH. Therefore, the polymer conjugate nanoparticles are suitable materials as additives or to form coatings on metal substrates for corrosion protection.Keywords: Corrosion inhibitor, 8-Hydroxyquinoline, Polymer conjugated, β-Thiopropionate
Procedia PDF Downloads 193150 Corrosion Behavior of Different Electroplated Systems Coated With Physical Vapor Deposition
Authors: Jorge Santos, Ana V. Girão, F. J. Oliveira, Alexandre C. Bastos
Abstract:
Protective or decorative coatings containing hexavalent chromium compounds are still used on metal and plastic parts. These hexavalent chromium compounds represent a risk to living beings and the environment, and, for this reason, there is a great need to investigate alternatives. Physical Vapor Deposition (PVD) is an environmentally friendly process that allows the deposition of wear and corrosion resistant thin films with excellent optical properties. However, PVD thin films are porous and if deposited onto low corrosion resistant substrates, lead to a degradation risk. The corrosion behavior of chromium-free electroplated coating systems finished with magnetron sputtered PVD thin films was investigated in this work. The electroplated systems consisted of distinct nickel layers deposited on top of a copper interlayer on acrylonitrile butadiene styrene (ABS) plates. Electrochemical and corrosion evaluation was conducted by electrochemical impedance spectroscopy and polarization curves on the different electroplated coating systems, with and without PVD thin film on top. The results show that the corrosion resistance is lower for the electroplated coating systems finished with PVD thin film for extended exposure periods when compared to those without the PVD overlay.Keywords: PVD, electroplating, corrosion, thin film
Procedia PDF Downloads 148149 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils
Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio
Abstract:
Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes
Procedia PDF Downloads 132148 High Temperature Oxidation Resistance of NiCrAl Bond Coat Produced by Spark Plasma Sintering as Thermal Barrier Coatings
Authors: Folorunso Omoniyi, Peter Olubambi, Rotimi Sadiku
Abstract:
Thermal barrier coating (TBC) system is used in both aero engines and other gas turbines to offer oxidation protection to superalloy substrate component. In the present work, it shows the ability of a new fabrication technique to develop rapidly new coating composition and microstructure. The compact powders were prepared by Powder Metallurgy method involving powder mixing and the bond coat was synthesized through the application of Spark Plasma Sintering (SPS) at 10500C to produce a fully dense (97%) NiCrAl bulk samples. The influence of sintering temperature on the hardness of NiCrAl, done by Micro Vickers hardness tester, was investigated. And Oxidation test was carried out at 1100oC for 20h, 40h, and 100h. The resulting coat was characterized with optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDAX) and x-ray diffraction (XRD). Micro XRD analysis after the oxidation test revealed the formation of protective oxides and non-protective oxides.Keywords: high-temperature oxidation, powder metallurgy, spark plasma sintering, thermal barrier coating
Procedia PDF Downloads 508147 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon
Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz
Abstract:
Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.Keywords: Silver nanoparticles, ligand, activated carbon, adsorption
Procedia PDF Downloads 329146 Finite Element Simulation of Limiting Dome Height Test on the Formability of Aluminium Tailor Welded Blanks
Authors: Lakhya Jyoti Basumatary, M. J. Davidson
Abstract:
Tailor Welded Blanks (TWBs) have established themselves to be a revolutionary and foremost integral part of the automotive and aerospace industries. Metals sheets with varied thickness, strength and coatings are welded together to form TWBs through friction stir welding and laser welding prior to stamping operations. The formability of the TWBs completely varies from those of conventional blanks due to the diverse strength levels of individual sheets which are made to deform under the same forming load uniformly throughout causing unequal and unsatisfactory deformation in the blank. Limiting Dome Height(LDH) test helps predicting the formability of each blanks and assists in determining the appropriate TWB. Finite Element Simulation of LDH test for both base material and TWBs was performed and analysed for both before and after the solution heat treatment. The comparison and validation of simulation results are done with the experimental data and correlated accordingly. The formability of solution heat treated TWBs had enhanced than those of blanks made from non-heat treated TWBs.Keywords: tailor welded blanks, friction stir welding, limiting dome height test, finite element simulation
Procedia PDF Downloads 224145 Resilience and Mindfulness as Individual Resources Building Communication Skills for Physicians
Authors: Malgorzata Sekulowicz, Krystyna Boron-Krupinska, Paulina Morga, Blazej Cieslik
Abstract:
Burnout is highly prevalent in health care employees, especially in physicians. It significantly reduces the efficiency of these employees, which can have negative consequences for both physicians and patients. Resilience and mindfulness enhancing positive emotions, leading to sustainable development and personal commitment, can have a significant impact on burnout. Therefore, the aim of this study was to determine the relationship between burnout symptoms and mindfulness and resilience among physicians. The authors conducted a cross-sectional survey study among seventy-four polish physicians. Participants filled out the following psychometric tools: the Maslach Burnout Inventory - Human Services Survey (MBI-HSS), Five Facet Mindfulness Questionnaire (FFMQ), Areas of Work-Life Survey (AWS), International Personality Item Pool (IPIP), the Resilience Assessment Scale (SPP-25) and the Mini-COPE Inventory. The relationship between burnout and resilience and mindfulness was assessed with path analysis. Analyzing the relationship between MBI-HSS components and mindfulness, a significant negative correlation of the FFMQ score with emotional exhaustion (-0.50, p < 0.05) and depersonalization (-0.43, p < 0.05) and a positive correlation with personal accomplishment (0.50, p < 0.05) was demonstrated. Analyzing resilience, a statistically significant relationship of SPP-25 with all tested components of MBI-HSS was demonstrated: emotional exhaustion (-0.54, p < 0.05), depersonalization (-0.31, p < 0.05) and personal accomplishment (0.35, p < 0.05). In the group of medical doctors, the higher the level of mindfulness and resilience, the lower the risk of burnout. Furthermore, the more frequently used active coping strategies (planning, acceptance), the lower the risk of burnout, while the use of passive, evasive strategies increases the risk of burnout. It may be worth considering implementing mindfulness intervention to effectively manage burnout symptoms in this group.Keywords: burnout, medical doctors, mindfulness, physicians, resilience
Procedia PDF Downloads 106144 Preparation of Polylactide Nanoparticles by Supercritical Fluid Technology
Authors: Jakub Zágora, Daniela Plachá, Karla Čech Barabaszová, Sylva Holešová, Roman Gábor, Alexandra Muñoz Bonilla, Marta Fernández García
Abstract:
The development of new antimicrobial materials that are not toxic to higher living organisms is a major challenge today. Newly developed materials can have high application potential in biomedicine, coatings, packaging, etc. A combination of commonly used biopolymer polylactide with cationic polymers seems to be very successful in the fight against antimicrobial resistance [1].PLA will play a key role in fulfilling the intention set out in the New Deal announced by the EU commission, as it is a bioplastic that is easily degradable, recyclable, and mass-produced. Also, the development of 3D printing in the context of this initiative, and the actual use of PLA as one of the main materials used for this printing, make the technology around the preparation and modification of PLA quite logical. Moreover, theenvironmentally friendly and energy saving technology like supercritical fluid process (SFP) will be used for their preparation. In a first approach, polylactide nano- and microparticles and structures were prepared by supercritical fluid extraction. The RESS (rapid expansion supercritical fluid solution) method is easier to optimize and shows better particle size control. On the contrary, a highly porous structure was obtained using the SAS (supercritical antisolvent) method. In a second part, the antimicrobial biobased polymer was introduced by SFP.Keywords: polylactide, antimicrobial polymers, supercritical fluid technology, micronization
Procedia PDF Downloads 188143 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection
Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos
Abstract:
Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide
Procedia PDF Downloads 315142 Wear Performance of SLM Fabricated 1.2709 Steel Nanocomposite Reinforced by TiC-WC for Mould and Tooling Applications
Authors: Daniel Ferreira, José M. Marques Oliveira, Filipe Oliveira
Abstract:
Wear phenomena is critical in injection moulding processes, causing failure of the components, and making the parts more expensive with an additional wasting time. When very abrasive materials are being injected inside the steel mould’s cavities, such as polymers reinforced with abrasive fibres, the consequences of the wear are more evident. Maraging steel (1.2709) is commonly employed in moulding components to resist in very aggressive injection conditions. In this work, the wear performance of the SLM produced 1.2709 maraging steel reinforced by ultrafine titanium and tungsten carbide (TiC-WC), was investigated using a pin-on-disk testing apparatus. A polypropylene reinforced with 40 wt.% fibreglass (PP40) disk, was used as the counterpart material. The wear tests were performed at 40 N constant load and 0.4 ms-1 sliding speed at room temperature and humidity conditions. The experimental results demonstrated that the wear rate in the 18Ni300-TiC-WC composite is lower than the unreinforced 18Ni300 matrix. The morphology and chemical composition of the worn surfaces was observed by 3D optical profilometry and scanning electron microscopy (SEM), respectively. The resulting debris, caused by friction, were also analysed by SEM and energy dispersive X-ray spectroscopy (EDS). Their morphology showed distinct shapes and sizes, which indicated that the wear mechanisms, may be different in maraging steel produced by casting and SLM. The coefficient of friction (COF) was recorded during the tests, which helped to elucidate the wear mechanisms involved.Keywords: selective laser melting, nanocomposites, injection moulding, polypropylene with fibreglass
Procedia PDF Downloads 156141 Recovery and Εncapsulation of Μarine Derived Antifouling Agents
Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas
Abstract:
Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction
Procedia PDF Downloads 342140 Nondestructive Acoustic Microcharacterisation of Gamma Irradiation Effects on Sodium Oxide Borate Glass X2Na2O-X2B2O3 by Acoustic Signature
Authors: Ibrahim Al-Suraihy, Abdellaziz Doghmane, Zahia Hadjoub
Abstract:
We discuss in this work the elastic properties by using acoustic microscopes to measure Rayleigh and longitudinal wave velocities in a no radiated and radiated sodium borate glasses X2Na2O-X2B2O3 with 0 ≤ x ≤ 27 (mol %) at microscopic resolution. The acoustic material signatures were first measured, from which the characteristic surface velocities were determined.Longitudinal and shear ultrasonic velocities were measured in a different composition of sodium borate glass samples before and after irradiation with γ-rays. Results showed that the effect due to increasing sodium oxide content on the ultrasonic velocity appeared more clearly than due to γ-radiation. It was found that as Na2O composition increases, longitudinal velocities vary from 3832 to 5636 m/s in irradiated sample and it vary from 4010 to 5836 m/s in high radiated sample by 10 dose whereas shear velocities vary from 2223 to 3269 m/s in irradiated sample and it vary from 2326 m/s in low radiation to 3385 m/s in high radiated sample by 10 dose. The effect of increasing sodium oxide content on ultrasonic velocity was very clear. The increase of velocity was attributed to the gradual increase in the rigidity of glass and hence strengthening of network due to gradual change of boron atoms from the three-fold to the four-fold coordination of oxygen atoms. The ultrasonic velocities data of glass samples have been used to find the elastic modulus. It was found that ultrasonic velocity, elastic modulus and microhardness increase with increasing barium oxide content and increasing γ-radiation dose.Keywords: mechanical properties X2Na2O-X2B2O3, acoustic signature, SAW velocities, additives, gamma-radiation dose
Procedia PDF Downloads 397139 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process
Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar
Abstract:
In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm
Procedia PDF Downloads 345138 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications
Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong
Abstract:
High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition
Procedia PDF Downloads 126137 Surface Coatings of Boards Made from Alternative Materials
Authors: Stepan Hysek, Petra Gajdacova
Abstract:
In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.Keywords: coating, surface, annual plant, composites, particleboard
Procedia PDF Downloads 270136 Characterization and Effect of Using Pumpkin Seeds Oil Methyl Ester (PSME) as Fuel in a LHR Diesel Engine
Authors: Hanbey Hazar, Hakan Gul, Ugur Ozturk
Abstract:
In order to decrease the hazardous emissions of the internal combustion engines and to improve the combustion and thermal efficiency, thermal barrier coatings are applied. In this experimental study, cylinder, piston, exhaust, and inlet valves which are combustion chamber components have been coated with a ceramic material, and this earned the engine LHR feature. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Pumpkin seeds oil methyl ester (PSME) was produced by the transesterification method. In addition, dimethoxymethane additive materials were used to improve the properties of diesel fuel, pumpkin seeds oil methyl ester (PSME) and its mixture. Dimethoxymethane was blended with test fuels, which was used as a pilot fuel, at the volumetric ratios of 4% and 8%. Due to thermal barrier coating, the diesel engine's CO, HC, and smoke density values decreased; but, NOx and exhaust gas temperature (EGT) increased.Keywords: boriding, diesel engine, exhaust emission, thermal barrier coating
Procedia PDF Downloads 477135 Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process
Authors: Manjit Singha, Sandeep Singh Sandhu, A. S. Shahi
Abstract:
Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure.Keywords: surfacing, stellite 6, dilution, overlay, SMAW, high-temperature frictional wear, micro-structure, micro-hardness
Procedia PDF Downloads 293134 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy
Authors: Jakub Czyżycki, Paweł Twardowski
Abstract:
Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations
Procedia PDF Downloads 58133 Mechanical Properties and Durability of Concretes Manufactured Using Pre-Coated Recycled Fine Aggregate
Authors: An Cheng, Hui-Mi Hsu, Sao-Jeng Chao, Wei-Ting Lin
Abstract:
This study investigated the mechanical properties and durability of concrete produced using recycled fine aggregate (RFA) pre-coated with fly ash, slag, and a polymer solution (PVA). We investigated the physical and microscopic properties of fresh concrete while adjusting several of the fabrication parameters, such as the constituent makeup and thickness of RFA pre-coatings. The study is divided into two parts. The first part involves mortar testing in which the RFA used for coating had a water/cement ratio of 0.5 and fly ash, slag, and PVA viscosity of 5~6cps, 21~26cps, 25~30cps, or 44~50cps. In these tests, 100% of the natural fine aggregate was replaced by RCA. The second part of the study involved the mixing of concrete with 25% FRA, which was respectively coated with fly ash, slag, or PVA at a viscosity of 44~50cps. In these tests, the water/cement ratio was either .4 or 0.6. The major findings in this study are summarized as follows: Coating RFA coated with fly ash and PVA was shown to increase flow in the fresh concrete; however, the coating of FRA with slag resulted in a slight decrease in flow. Coating FRA with slag was shown to improve the compressive and splitting strength to a greater degree than that achieved by coating FRA with fly ash and PVA. The mechanical properties of concrete mixed with slag were shown to increase with the thickness of the coating. Coating FRA with slag was also shown to enhance the durability of the concrete, regardless of the water/cement ratio.Keywords: recycled fine aggregates, pre-coated, fly ash, slag, pre-coated thickness
Procedia PDF Downloads 324132 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars
Authors: Zeki Kara, Kevser Yazar
Abstract:
Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.
Procedia PDF Downloads 171