Search results for: G. Chubinidze
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: G. Chubinidze

2 Influence of Boron and Germanium Doping on Physical-Mechanical Properties of Monocrystalline Silicon

Authors: Ia Kurashvili, Giorgi Darsavelidze, Giorgi Chubinidze, Marina Kadaria

Abstract:

Boron-doped Czochralski (CZ) silicon of p-type, widely used in the photovoltaic industry is suffering from the light-induced-degradation (LID) of bulk electrophysical characteristics. This is caused by specific metastable B-O defects, which are characterized by strong recombination activity. In this regard, it is actual to suppress B-O defects in CZ silicon. One of the methods is doping of silicon by different isovalent elements (Ge, C, Sn). The present work deals with the investigations of the influence of germanium doping on the internal friction and shear modulus amplitude dependences in the temperature interval of 600-800⁰C and 0.5-5 Hz frequency range in boron-containing monocrystalline silicon. Experimental specimens were grown by Czochralski method (CZ) in [111] direction. Four different specimens were investigated: Si+0,5at%Ge:B (5.1015cm-3), Si+0,5at%Ge:B (1.1019cm-3), Si+2at%Ge:B (5.1015cm-3) and Si+2at%Ge:B (1.1019cm-3). Increasing tendency of dislocation density and inhomogeneous distribution in silicon crystals with high content of boron and germanium were revealed by metallographic studies on the optical microscope of NMM-80RF/TRF. Weak increase of current carriers-holes concentration and slight decrease of their mobility were observed by Van der Pauw method on Ecopia HMS-3000 device. Non-monotonous changes of dislocation origin defects mobility and microplastic deformation characteristics influenced by measuring temperatures and boron and germanium concentrations were revealed. Possible mechanisms of changes of mechanical characteristics in Si-Ge experimental specimens were discussed.

Keywords: dislocation, internal friction, microplastic deformation, shear modulus

Procedia PDF Downloads 213
1 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 111