Search results for: pressure coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5909

Search results for: pressure coefficient

1019 Involvement of Community Pharmacists in Public Health Services in Asir Region, Saudi Arabia: A Cross-Sectional Study

Authors: Mona Almanasef, Dalia Almaghaslah, Geetha Kandasamy, Rajalakshimi Vasudevan, Sadia Batool

Abstract:

Background: Community pharmacists are one of the most accessible healthcare practitioners worldwide and their services are used by a large proportion of the population. Expanding the roles of community pharmacists could contribute to reducing pressure on general health practice and other areas of health services. This research aimed to evaluate the contribution of community pharmacists in the provision of public health services and to investigate the perceived barriers to the provision of these services in Saudi Arabia. Materials and Methods: This study followed a cross-sectional design using an online anonymous self-administered questionnaire. The study took place in the Asir region, Saudi Arabia, between September 2019 and February 2020. A convenience sampling strategy was used to select and recruit the study participants. The questionnaire was adapted from previous research and involved three sections: demographics, involvement in public health services and barriers to practicing public health roles. Results: The total number of respondents was 193. The proportion of respondents who reported that they were “very involved” or “involved” in each service was 61.7% for weight management, 60.6% for sexual health, 57.5% for healthy eating, 53.4% for physical activity promotion, 51.3% for dental health, 46.1% for smoking cessation, 39.4% for screening for diabetes, 35.7% for screening for hypertension, 31.1% for alcohol dependence and drug misuse counseling, 30.6% for screening for dyslipidaemia, and 21.8% for vaccination and immunization. Most of the barriers in the current research were rated as having low relevance to the provision of public health services. Conclusion: Findings in the current research suggest that community pharmacists in the Asir region have varying levels of involvement in public health roles. Further research needs to be undertaken to understand the barriers to the provision of public health services and what strategies would be beneficial for enhancing the public health role of community pharmacists in Saudi Arabia.

Keywords: community pharmacist, public health, Asir region, Saudi Arabia

Procedia PDF Downloads 72
1018 ‘Social Health’, ‘Physical Health’ and Wellbeing: Analyzing the Interplay between the Practices of Heavy Drinking and Exercise among Young People with Bourdieusian Concepts

Authors: Jukka Törrönen

Abstract:

In the article, we examine the interplay between the practices of heavy drinking and exercise among young people as patterned around the ‘social’ and ‘physical health’ approaches. The comparison helps us to clarify why young people are currently drinking less than earlier and how the neoliberal healthism discourse, as well as the feminine tradition of taking care of one’s body, are modifying young people’s heavy drinking practices. The data is based on interviews (n = 56) in Sweden among 15-16-year-olds and 18˗19-year-olds. By drawing on Pierre Bourdieu’s concepts of habitus, field, and capital, we examine what kinds of resources of wellbeing young people accumulate in the fields of heavy drinking and exercise, how these resources carry symbolic value for distinction, and what kind of health-related habitus they imply. The analysis suggests that as heavy drinking is no longer able to stand as a practice through which one may acquire capital that is more valuable than the capital acquired in other fields, this lessens peer pressure to drink among young people. Our analysis further shows that the healthism discourse modifies young people’s heavy drinking practices both from inside and from outside. The interviewees translate the symbolic value of healthism discourse to social vulnerability and deploy it for the purposes of increasing one’s social status among peers. Moreover, our analysis demonstrates that the social spaces and positions in intoxication and exercise are shaped by gendered dualisms of masculine dominance. However, while the interviewees naturalize the gender binaries in intoxication as based on biological drives, they understand gender binaries in exercise as normative social constructions of neoliberal society. As these binaries emphasize the struggle for recognition of the symbolic value of bodily look, they may shift young men’s attention from risk-taking to issues that traditionally have been female concerns.

Keywords: young people, decline in drinking , health, intoxication, exercise, Bourdieu

Procedia PDF Downloads 94
1017 Evaluation of Existing Wheat Genotypes of Bangladesh in Response to Salinity

Authors: Jahangir Alam, Ayman El Sabagh, Kamrul Hasan, Shafiqul Islam Sikdar, Celaleddin Barutçular, Sohidul Islam

Abstract:

The experiment (Germination test and seedling growth) was carried out at the laboratory of Agronomy Department, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, Bangladesh during January 2014. Germination and seedling growth of 22 existing wheat genotypes in Bangladesh viz. Kheri, Kalyansona, Sonora, Sonalika, Pavon, Kanchan, Akbar, Barkat, Aghrani, Prativa, Sourab, Gourab, Shatabdi, Sufi, Bijoy, Prodip, BARI Gom 25, BARI Gom 26, BARI Gom 27, BARI Gom 28, Durum and Triticale were tested with three salinity levels (0, 100 and 200 mM NaCl) for 10 days in sand culture in small plastic pot. Speed of germination as expressed by germination percentage (GP), rate of germination (GR), germination coefficient (GC) and germination vigor index (GVI) of all wheat genotypes was delayed and germination percentage was reduced due to salinization compared to control. The lower reduction of GP, GR, GC and VI due to salinity was observed in BARI Gom 25, BARI Gom 27, Shatabdi, Sonora, and Akbbar and higher reduction was recorded in BARI Gom 26, Duram, Triticale, Sufi and Kheri. Shoot and root lengths, fresh and dry weights were found to be affected due to salinization and shoot was more affected than root. Under saline conditions, longer shoot and root length were recorded in BARI Gom 25, BARI Gom 27, Akbar, and Shatabdi, i.e. less reduction of shoot and root lengths was observed while, BARI Gom 26, Duram, Prodip and Triticale produced shorted shoot and root lengths. In this study, genotypes BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed better performance in terms shoot and root growth (fresh and dry weights) and proved to be tolerant genotypes to salinity. On the other hand, Duram, BARI Gom 26, Triticale, Kheri and Prodip affected seriously in terms of fresh and dry weights by the saline environment. BARI Gom 25, BARI Gom 27, Shatabdi, Sonora and Aghrani showed more salt tolerance index (STI) based on shoot dry weight while, BARI Gom 26, Triticale, Durum, Sufi, Prodip and Kalyanson demonstrate lower STI value under saline conditions. Based on the most salt tolerance and susceptible trait, genotypes under 100 and 200 mM NaCl stresses can be arranged as salt tolerance genotypes: BARI Gom 25> BARI Gom 27> Shatabdi> Sonora, and salt susceptible genotypes: BARI Gom 26> Durum> Triticale> Prodip> Sufi> Kheri. Considering the experiment, it can be concluded that the BARI Gom 25 may be treated as the most salt tolerant and BARI Gom 26 as the most salt sensitive genotypes in Bangladesh.

Keywords: genotypes, germination, salinity, wheat

Procedia PDF Downloads 274
1016 Nanoprecipitation with Ultrasonication for Enhancement of Oral Bioavailability of Fursemide: Pharmacokinetics and Pharmacodynamics Study in Rat Model

Authors: Malay K. Das, Bhanu P. Sahu

Abstract:

Furosemide is a weakly acidic diuretic indicated for treatment of edema and hypertension. It has very poor solubility but high permeability through stomach and upper gastrointestinal tract (GIT). Due to its limited solubility it has poor and variable oral bioavailability of 10-90%. The aim of this study was to enhance the oral bioavailability of furosemide by preparation of nanosuspensions. The nanosuspensions were prepared by nanoprecipitation with sonication using DMSO (dimethyl sulfoxide) as a solvent and water as an antisolvent (NA). The prepared nanosuspensions were sterically stabilized with polyvinyl acetate (PVA).These were characterized for particle size, ζ potential, polydispersity index, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD) pattern and release behavior. The effect of nanoprecipitation on oral bioavailability of furosemide nanosuspension was studied by in vitro dissolution and in vivo absorption study in rats and compared to pure drug. The stable nanosuspension was obtained with average size range of the precipitated nanoparticles between 150-300 nm and was found to be homogenous showing a narrow polydispersity index of 0.3±0.1. DSC and XRD studies indicated that the crystalline furosemide drug was converted to amorphous form upon precipitation into nanoparticles. The release profiles of nanosuspension formulation showed up to 81.2% release in 4 h. The in vivo studies on rats revealed a significant increase in the oral absorption of furosemide in the nanosuspension compared to pure drug. The AUC0→24 and Cmax values of nanosuspension were approximately 1.38 and 1.68-fold greater than that of pure drug, respectively. Furosemide nanosuspension showed 20.06±0.02 % decrease in systolic blood pressure compared to 13.37±0.02 % in plain furosemide suspension, respectively. The improved oral bioavailability and pharmacodynamics effect of furosemide may be due to the improved dissolution of furosemide in simulated gastric fluid which results in enhanced oral systemic absorption of furosemide from stomach region where it has better permeability.

Keywords: furosemide, nanosuspension, bioavailability enhancement, nanoprecipitation, oral drug delivery

Procedia PDF Downloads 544
1015 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.

Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry

Procedia PDF Downloads 122
1014 Expression of Somatostatin and Neuropeptide Y in Dorsal Root Ganglia Following Hind Paw Incision in Rats

Authors: Anshu Bahl, Saroj Kaler, Shivani Gupta, S B Ray

Abstract:

Background: Somatostatin is an endogenous regulatory neuropeptide. Somatostatin and its analogues play an important role in neuropathic and inflammatory pain. Neuropeptide Y is extensively distributed in the mammalian nervous system. NPY has an important role in blood pressure, circadian rhythm, obesity, appetite and memory. The purpose was to investigate somatostatin and NPY expression in dorsal root ganglia during pain. The plantar incision model in rats is similar to postoperative pain in humans. Methods: 24 adult male Sprague dawley rats were distributed randomly into two groups – Control (n=6) and incision (n=18) groups. Using Hargreaves apparatus, thermal hyperalgesia behavioural test for nociception was done under basal condition and after surgical incision in right hind paw at different time periods (day 1, 3 and 5). The plantar incision was performed as per standard protocol. Perfusion was done using 4% paraformaldehyde followed by extraction of dorsal root ganglia at L4 level. The tissue was processed for immunohistochemical localisation for somatostatin and neuropeptide Y. Results: Post incisional groups (day 1, 3 and 5) exhibited significant decrease of paw withdrawal latency as compared to control groups. Somatostatin expression was noted under basal conditions. It decreased on day 1, but again gradually increased on day 3 and further on day five post incision. The expression of Neuropeptide Y was noted in the cytoplasm of dorsal root ganglia under basal conditions. Compared to control group, expression of neuropeptide Y decreased on day one after incision, but again gradually increased on day 3. Maximum expression was noted on day five post incision. Conclusion: Decrease in paw withdrawal latency indicated nociception, particularly on day 1. In comparison to control, somatostatin and NPY expression was decreased on day one post incision. This could be correlated with increased axoplasmic flow towards the spinal cord. Somatostatin and NPY expression was maximum on day five post incision. This could be due to decreased migration from the site of synthesis towards the spinal cord.

Keywords: dorsal root ganglia, neuropeptide y, postoperative pain, somatostatin

Procedia PDF Downloads 153
1013 Effects of a 6-Month Caloric Restriction Induced-Weight Loss Program in Obese Postmenopausal Women with and without the Metabolic Syndrome: A MONET Study

Authors: Ahmed Ghachem, Denis Prud’homme, Rémi-Rabasa-Lhoret, M. Brochu

Abstract:

Objective: To compare the effects of a CR on body composition, lipid profile and glucose homeostasis in obese postmenopausal women with and without MetS. Methods: Secondary analyses were performed on seventy-three inactive obese postmenopausal women (age: 57.7 ± 4.8 yrs; body mass index: 32.4 ± 4.6 kg/m2) who participated in the 6-month caloric restriction arm of a study of the Montreal-Ottawa New Emerging Team. The harmonized MetS definition was used to categorized participants with MetS [n = 20, 27.39%] and without MetS [n = 53, 72.61%]. Variables of interest were: body composition (DXA), body fat distribution (CT scan), glucose homeostasis at the fasting state and during a euglycemic/hyperinsulinemic clamp, fasting lipids and resting blood pressure. Results: By design, the MetS group had a worse cardiometabolic profile; while both groups were comparable for age. Fifty-five patients out of seventy-three displayed no change in MetS status after the intervention. Twelve participants out of twenty (or 60.0%) in the MetS group had no more MetS after weight loss (P= NS); while six participants out of fifty three (or 11.3%) in the other group developed the MetS after the intervention (P= NS). Overall, indices of body composition and body fat distribution improved significantly and similarly in both groups (P between 0.03 and 0.0001). Furthermore, with the exception of triglyceride levels and triglycerides/HDL-C ratio, which decrease significantly more in the MetS group (P ≤ 0.05), no difference was observed between groups for the other variables of the cardiometabolic profile. Conclusion: Despite no overall significant effects on MetS, heterogeneous results were obtained in response to weight loss in the present study; with some improving the MetS while other displaying deteriorations. Further studies are needed in order to identify factors and phenotypes associated with positive and negative cardiometabolic responses to CR intervention.

Keywords: menopause, obesity, physical inactivity, metabolic syndrome, caloric restriction, weight loss

Procedia PDF Downloads 319
1012 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning

Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü

Abstract:

This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.

Keywords: automotive, chassis level control, control systems, pneumatic system control

Procedia PDF Downloads 53
1011 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models

Authors: Ozan Kahraman, Hao Feng

Abstract:

Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.

Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7

Procedia PDF Downloads 343
1010 Numerical Investigation of Gas Leakage in RCSW-Soil Combinations

Authors: Mahmoud Y. M. Ahmed, Ahmed Konsowa, Mostafa Sami, Ayman Mosallam

Abstract:

Fukushima nuclear accident (Japan 2011) has drawn attention to the issue of gas leakage from hazardous facilities through building boundaries. The rapidly increasing investments in nuclear stations have made the ability to predict, and prevent, gas leakage a rather crucial issue both environmentally and economically. Leakage monitoring for underground facilities is rather complicated due to the combination of Reinforced Concrete Shear Wall (RCSW) and soil. In the framework of a recent research conducted by the authors, the gas insulation capabilities of RCSW-soil combination have been investigated via a lab-scale experimental work. Despite their accuracy, experimental investigations are expensive, time-consuming, hazardous, and lack for flexibility. Numerically simulating the gas leakage as a fluid flow problem based on Computational Fluid Dynamics (CFD) modeling approach can provide a potential alternative. This novel implementation of CFD approach is the topic of the present paper. The paper discusses the aspects of modeling the gas flow through porous media that resemble the RCSW both isolated and combined with the normal soil. A commercial CFD package is utilized in simulating this fluid flow problem. A fixed RCSW layer thickness is proposed, air is taken as the leaking gas, whereas the soil layer is represented as clean sand with variable properties. The variable sand properties include sand layer thickness, fine fraction ratio, and moisture content. The CFD simulation results almost demonstrate what has been found experimentally. A soil layer attached next to a cracked reinforced concrete section plays a significant role in reducing the gas leakage from that cracked section. This role is found to be strongly dependent on the soil specifications.

Keywords: RCSW, gas leakage, Pressure Decay Method, hazardous underground facilities, CFD

Procedia PDF Downloads 392
1009 Evaluation of Sequential Polymer Flooding in Multi-Layered Heterogeneous Reservoir

Authors: Panupong Lohrattanarungrot, Falan Srisuriyachai

Abstract:

Polymer flooding is a well-known technique used for controlling mobility ratio in heterogeneous reservoirs, leading to improvement of sweep efficiency as well as wellbore profile. However, low injectivity of viscous polymer solution attenuates oil recovery rate and consecutively adds extra operating cost. An attempt of this study is to improve injectivity of polymer solution while maintaining recovery factor, enhancing effectiveness of polymer flooding method. This study is performed by using reservoir simulation program to modify conventional single polymer slug into sequential polymer flooding, emphasizing on increasing of injectivity and also reduction of polymer amount. Selection of operating conditions for single slug polymer including pre-injected water, polymer concentration and polymer slug size is firstly performed for a layered-heterogeneous reservoir with Lorenz coefficient (Lk) of 0.32. A selected single slug polymer flooding scheme is modified into sequential polymer flooding with reduction of polymer concentration in two different modes: Constant polymer mass and reduction of polymer mass. Effects of Residual Resistance Factor (RRF) is also evaluated. From simulation results, it is observed that first polymer slug with the highest concentration has the main function to buffer between displacing phase and reservoir oil. Moreover, part of polymer from this slug is also sacrificed for adsorption. Reduction of polymer concentration in the following slug prevents bypassing due to unfavorable mobility ratio. At the same time, following slugs with lower viscosity can be injected easily through formation, improving injectivity of the whole process. A sequential polymer flooding with reduction of polymer mass shows great benefit by reducing total production time and amount of polymer consumed up to 10% without any downside effect. The only advantage of using constant polymer mass is slightly increment of recovery factor (up to 1.4%) while total production time is almost the same. Increasing of residual resistance factor of polymer solution yields a benefit on mobility control by reducing effective permeability to water. Nevertheless, higher adsorption results in low injectivity, extending total production time. Modifying single polymer slug into sequence of reduced polymer concentration yields major benefits on reducing production time as well as polymer mass. With certain design of polymer flooding scheme, recovery factor can even be further increased. This study shows that application of sequential polymer flooding can be certainly applied to reservoir with high value of heterogeneity since it requires nothing complex for real implementation but just a proper design of polymer slug size and concentration.

Keywords: polymer flooding, sequential, heterogeneous reservoir, residual resistance factor

Procedia PDF Downloads 449
1008 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 316
1007 Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Authors: S. Sadhu, M. Ramgopal, S. Bhattacharyya

Abstract:

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

Keywords: conjugate heat transfer, heat loss, natural circulation loop, supercritical carbon dioxide

Procedia PDF Downloads 216
1006 The Planning and Development of Green Public Places in Urban South Africa: A Child-Friendly Approach

Authors: E. J. Cilliers, Z. Goosen

Abstract:

The impact that urban green spaces have on sustainability and quality of life is phenomenal. This is also true for the local South African environment. However, in reality green spaces in urban environments are decreasing due to growing populations, increasing urbanization and development pressure. This further impacts on the provision of child-friendly spaces, a concept that is already limited in local context. Child-friendly spaces are described as environments in which people (children) feel intimately connected to, influencing the physical, social, emotional, and ecological health of individuals and communities. The benefits of providing such spaces for the youth are well documented in literature. This research therefore aimed to investigate the concept of child-friendly spaces and its applicability to the South African planning context, in order to guide the planning of such spaces for future communities and use. Child-friendly spaces in the urban environment of the city of Durban, was used as local case study, along with two international case studies namely Mullerpier public playground in Rotterdam, the Netherlands, and Kadidjiny Park in Melville, Australia. The aim was to determine how these spaces were planned and developed and to identify tools that were used to accomplish the goal of providing successful child-friendly green spaces within urban areas. The need and significance of planning for such spaces was portrayed within the international case studies. It is confirmed that minimal provision is made for green space planning within the South African context, when there is reflected on the international examples. As a result international examples and disciples of providing child-friendly green spaces should direct planning guidelines within local context. The research concluded that child-friendly green spaces have a positive impact on the urban environment and assist in a child’s development and interaction with the natural environment. Regrettably, the planning of these child-friendly spaces is not given priority within current spatial plans, despite the proven benefits of such.

Keywords: built environment, child-friendly spaces, green spaces, public places, urban area

Procedia PDF Downloads 417
1005 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 36
1004 Synthesis of 5-Substituted 1H-Tetrazoles in Deep Eutectic Solvent

Authors: Swapnil A. Padvi, Dipak S. Dalal

Abstract:

The chemistry of tetrazoles has been grown tremendously in the past few years because tetrazoles are important and useful class of heterocyclic compounds which have a widespread application such as anticancer, antimicrobial, analgesics, antibacterial, antifungal, antihypertensive, and anti-allergic drugs in medicinal chemistry. Furthermore, tetrazoles have application in material sciences as explosives, rocket propellants, and in information recording systems. In addition to this, they have a wide range of application in coordination chemistry as a ligand. Deep eutectic solvents (DES) have emerged over the current decade as a novel class of green reaction media and applied in various fields of sciences because of their unique physical and chemical properties similar to the ionic liquids such as low vapor pressure, non-volatility, high thermal stability and recyclability. In addition, the reactants of DES are cheaply available, low-toxic, and biodegradable, which makes them predominantly required for large-scale applications effectively in industrial production. Herein we report the [2+3] cycloaddition reaction of organic nitriles with sodium azide affords the corresponding 5-substituted 1H-tetrazoles in six different types of choline chloride based deep eutectic solvents under mild reaction condition. Choline chloride: ZnCl2 (1:2) showed the best results for the synthesis of 5-substituted 1 H-tetrazoles. This method reduces the disadvantages such as: the use of toxic metals and expensive reagents, drastic reaction conditions and the presence of dangerous hydrazoic acid. The approach provides environment-friendly, short reaction times, good to excellent yields; safe process and simple workup make this method an attractive and useful contribution to present green organic synthesis of 5-substituted-1H-tetrazoles. All synthesized compounds were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy. DES can be recovered and reused three times with very little loss in activity.

Keywords: click chemistry, choline chloride, green chemistry, deep eutectic solvent, tetrazoles

Procedia PDF Downloads 211
1003 Preliminary Performance of a Liquid Oxygen-Liquid Methane Pintle Injector for Thrust Variations

Authors: Brunno Vasques

Abstract:

Due to the non-toxic nature and high performance in terms of vacuum specific impulse and density specific impulse, the combination of liquid oxygen and liquid methane have been identified as a promising option for future space vehicle systems. Applications requiring throttling capability include specific missions such as rendezvous, planetary landing and de-orbit as well as weapon systems. One key challenge in throttling liquid rocket engines is maintaining an adequate pressure drop across the injection elements, which is necessary to provide good propellant atomization and mixing as well as system stability. The potential scalability of pintle injectors, their great suitability to throttling and inherent combustion stability characteristics led to investigations using a variety of propellant combinations, including liquid oxygen and hydrogen and fluorine-oxygen and methane. Presented here are the preliminary performance and heat transfer information obtained during hot-fire testing of a pintle injector running on liquid oxygen and liquid methane propellants. The specific injector design selected for this purpose is a multi-configuration building block version with replaceable injection elements, providing flexibility to accommodate hardware modifications with minimum difficulty. On the basis of single point runs and the use of a copper/nickel segmented calorimetric combustion chamber and associated transient temperature measurement, the characteristic velocity efficiency, injector footprint and heat fluxes could be established for the first proposed pintle configuration as a function of injection velocity- and momentum-ratios. A description of the test-bench is presented as well as a discussion of irregularities encountered during testing, such as excessive heat flux into the pintle tip resulting from certain operating conditions.

Keywords: green propellants, hot-fire performance, rocket engine throttling, pintle injector

Procedia PDF Downloads 305
1002 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions

Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali

Abstract:

The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.

Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor

Procedia PDF Downloads 111
1001 Association Analysis of Putative Loci with Coronary Artery Disease

Authors: Asma Naseer Cheema, Attya Bhatti, Jabar Ali, John Peter

Abstract:

Background: High cholesterol levels, endothelial dysfunction, inefficient coagulation cascade and hyper inflammatory response all are the basis of coronary artery disease (CAD). Several studies are carried out to see the genetic influence of these factors on disease outcome. Objective: The objective of our study was to see the association of 10 putative loci with coronary artery disease in our population. Materials & Methods: We screened our population for 10 putative loci of CAD showing significant association (p < 5x10-8) with candidate genes (regulating the cholesterol metabolism, endothelial function, coagulation cascade and inflammatory response of body). Hardy-Weinberg equilibrium and linkage disequilibrium in cases and controls s were estimated separately. Approximately 5-10 ng of dried DNA in 384 well plate format was used to genotype each sample on the Sequenom iPLEX assay at University of Pittsburgh Genomics and Proteomics Core Laboratories. It was built on single-base primer extension with the MALDI-TOF MS detection possessing high sensitivity and specificity. The SNPs were genotyped through Taqman assay. Hardy Weinberg test was applied. The 10 SNPs were selected as genetic markers for this study (rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650). Results: Mean age of the patient was 52 ± 11 years. Blood pressure and positive family history was found a significant risk factor for CAD. None of the selected SNPs showed significant association with coronary artery disease in our population (p>0.05). Conclusion: rs579459, rs1561198, rs2954029, rs1122608, rs17114036, rs9515203, rs10947789, rs7173743, rs2895811, rs2075650 are not significant genetic markers for CAD in our population.

Keywords: CAD, genetic markers, loci, risk factors

Procedia PDF Downloads 342
1000 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects

Authors: Rabea Sefrin, Christian Glock, Juergen Schnell

Abstract:

The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.

Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation

Procedia PDF Downloads 90
999 A Game-Based Methodology to Discriminate Executive Function – a Pilot Study With Institutionalized Elderly People

Authors: Marlene Rosa, Susana Lopes

Abstract:

There are few studies that explore the potential of board games as a performance measure, despite it can be an interesting strategy in the context of frailty populations. In fact, board games are immersive strategies than can inhibit the pressure of being evaluated. This study aimed to test the ability of gamed-base strategies to assess executive function in elderly population. Sixteen old participants were included: 10 with affected executive functions (G1 – 85.30±6.00 yrs old; 10 male); 6 with executive functions with non-clinical important modifications (G2 - 76.30±5.19 yrs old; 6 male). Executive tests were assessed using the Frontal Assessment Battery (FAB), which is a quick-applicable cognitive screening test (score<12 means impairment). The board game used in this study was the TATI Hand Game, specifically for training rhythmic coordination of the upper limbs with multiple cognitive stimuli. This game features 1 table grid, 1 set of Single Game cards (to play with one hand); Double Game cards (to play simultaneously with two hands); 1 dice to plan Single Game mode; cards to plan the Double Game mode; 1 bell; 2 cups. Each participant played 3 single game cards, and the following data were collected: (i) variability in time during board game challenges (SD); (ii) number of errors; (iii) execution speed (sec). G1 demonstrated: high variability in execution time during board game challenges (G1 – 13.0s vs G2- 0.5s); a higher number of errors (1.40 vs 0.67); higher execution velocity (607.80s vs 281.83s). These results demonstrated the potential of implementing board games as a functional assessment strategy in geriatric care. Future studies might include larger samples and statistical methodologies to find cut-off values for impairment in executive functions during performance in TATI game.

Keywords: board game, aging, executive function, evaluation

Procedia PDF Downloads 121
998 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt

Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify

Abstract:

The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties. There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes. The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grain-stone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intra-particle pore spaces, which may produce lines of weakness within the rock.

Keywords: compressive strength, anisotropy, calcarenites, Egypt

Procedia PDF Downloads 349
997 Flow Links Curiosity and Creativity: The Mediating Role of Flow

Authors: Nicola S. Schutte, John M. Malouff

Abstract:

Introduction: Curiosity is a positive emotion and motivational state that consists of the desire to know. Curiosity consists of several related dimensions, including a desire for exploration, deprivation sensitivity, and stress tolerance. Creativity involves generating novel and valuable ideas or products. How curiosity may prompt greater creativity remains to be investigated. The phenomena of flow may link curiosity and creativity. Flow is characterized by intense concentration and absorption and gives rise to optimal performance. Objective of Study: The objective of the present study was to investigate whether the phenomenon of flow may link curiosity with creativity. Methods and Design: Fifty-seven individuals from Australia (45 women and 12 men, mean age of 35.33, SD=9.4) participated. Participants were asked to design a program encouraging residents in a local community to conserve water and to record the elements of their program in writing. Participants were then asked to rate their experience as they developed and wrote about their program. Participants rated their experience on the Dimensional Curiosity Measure sub-scales assessing the exploration, deprivation sensitivity, and stress tolerance facets of curiosity, and the Flow Short Scale. Reliability of the measures as assessed by Cronbach's alpha was as follows: Exploration Curiosity =.92, Deprivation Sensitivity Curiosity =.66, Stress Tolerance Curiosity =.93, and Flow=.96. Two raters independently coded each participant’s water conservation program description on creativity. The mixed-model intraclass correlation coefficient for the two sets of ratings was .73. The mean of the two ratings produced the final creativity score for each participant. Results: During the experience of designing the program, all three types of curiosity were significantly associated with the flow. Pearson r correlations were as follows: Exploration Curiosity and flow, r =.68 (higher Exploration Curiosity was associated with more flow); Deprivation Sensitivity Curiosity and flow, r =.39 (higher Deprivation Sensitivity Curiosity was associated with more flow); and Stress Tolerance Curiosity and flow, r = .44 (more stress tolerance in relation to novelty and exploration was associated with more flow). Greater experience of flow was significantly associated with greater creativity in designing the water conservation program, r =.39. The associations between dimensions of curiosity and creativity did not reach significance. Even though the direct relationships between dimensions of curiosity and creativity were not significant, indirect relationships through the mediating effect of the experience of flow between dimensions of curiosity and creativity were significant. Mediation analysis using PROCESS showed that flow linked Exploration Curiosity with creativity, standardized beta=.23, 95%CI [.02,.25] for the indirect effect; Deprivation Sensitivity Curiosity with creativity, standardized beta=.14, 95%CI [.04,.29] for the indirect effect; and Stress Tolerance Curiosity with creativity, standardized beta=.13, 95%CI [.02,.27] for the indirect effect. Conclusions: When engaging in an activity, higher levels of curiosity are associated with greater flow. More flow is associated with higher levels of creativity. Programs intended to increase flow or creativity might build on these findings and also explore causal relationships.

Keywords: creativity, curiosity, flow, motivation

Procedia PDF Downloads 161
996 Deprivation of Adivasi People's Rights to Forest Resources: A Case Study from United Andhra Pradesh India

Authors: Anil Kumar Kursenge

Abstract:

In the State of united Andhra Pradesh, many Adivasi People live in areas rich in living and non-living resources, including forests that contain abundant biodiversity, water and minerals. Of united Andhra Pradesh 76.2m population, over five million are Adivasi population of forest landscape. They depend on forests for a substantial part of their livelihoods and close cultural affinity with forests. However, they are the most impoverished population of the State, and the high levels of poverty in Andhra Pradesh forest landscapes are largely an outcome of historically-rooted institutionalised marginalisation. As the State appropriated forests and forest land for itself, it deprived local people of their customary rights in the forest. The local realities of the forest rights deprivations are extremely complex, reflecting a century and a half of compounded processes. With growing population pressure and ever-increasing demands for natural and mineral resources, Adivasi Peoples' lands, which are often relatively rich in resources, become more and more attractive to 'developers.' The development projects and institutionalised marginalisation have been deprived Adivasi people's rights over natural resources has resulted in serious negative effects on Adivasi people and on their lands. Historically, the desire for development for such resources has resulted in the removal, decimation, or extermination of many tribal communities. These deprivations have led to highly conflictual relations between the State and the Adivasi people and forest areas in Andhra Pradesh. Today, the survival of the Adivasi Peoples requires recognition of their rights to the forest resources found in their lands and territories on which they depend for their economic, cultural, survival, spiritual and physical well-being. In this context, this paper attempts to discuss the issues of deprivation with regard to access to forest resources and development projects where many Adivasis in State uprooted from their homes and lands.

Keywords: tribal people, forest rights, livelihoods, deprivation, marginalisation, Andhra Pradesh

Procedia PDF Downloads 176
995 The Effect of Different Extraction Techniques on the Yield and the Composition of Oil (Laurus Nobilis L.) Fruits Widespread in Syria

Authors: Khaled Mawardi

Abstract:

Bay laurel (Laurus nobilis L.) is an evergreen of the Laurus genus of the Lauraceae Family. It is a plant native to the southern Mediterranean and widespread in Syria. It is a plant with enormous industrial applications. For instance, they are used as platform chemicals in food, pharmaceutical and cosmetic applications. Herein, we report an efficient extraction of Bay laurel oil from Bay laurel fruits via a comparative investigation of boiled water conventional extraction technique and microwave-assisted extraction (MAE) by microwave heating at atmospheric pressure. In order to optimize the extraction efficiency, we investigated several extraction parameters, such as extraction time and microwave power. In addition, to demonstrate the feasibility of the method, oil obtained under optimal conditions by method (MAE) was compared quantitatively and qualitatively with that obtained by the conventional method. After 1h of microwave-assisted extraction (power of 600W), an oil yield of 9.8% with identified lauric acid content of 22.7%. In comparison, an extended extraction of up to 4h was required to obtain a 9.7% yield of oil extraction with 21.2% of lauric acid content. The change in microwave power impacts the fatty acids profile and also the quality parameters of Laurel Oil. It was found that the profile of fatty acids changed with the power, where the lauric acid content increased from 22.7% at 600W to 30.5% at 1200W owing to a decrease of oleic acid content from 32.8% at 600W to 28.3% at 1200W and linoleic acid content from 22.3% at 600W to 20.6% at 1200W. In addition, we observed a decrease in oil yield from 9.8% at 600W to 5.1% at 1200W. Summarily, the overall results indicated that the extraction of laurel fruit oils could be successfully performed using (MAE) at a short extraction time and lower energy compared with the fixed oil obtained by conventional processes of extraction. Microwave heating exerted more aggressive effects on the oil. Indeed, microwave heating inflicted changes in the fatty acids profile of oil; the most affected fraction was the unsaturated fatty acids, with higher susceptibility to oxidation.

Keywords: microwaves, extraction, Laurel oil, solvent-free

Procedia PDF Downloads 46
994 Assessment of Environmental Implications of Rapid Population Growth on Land Use Dynamics: A Case Study of Eleme Local Government Area, Rivers State, Nigeria

Authors: Moses Obenade, Henry U. Okeke, Francis I. Okpiliya, Eugene J. Aniah

Abstract:

Population growth in Eleme has been rapid over the past 75 years with its attendant pressure on the natural resources of the area. Between 1937 and 2006 the population of Eleme grew from 2,528 to 190,194 and is projected to be above 265,707 in 2016 based on an annual growth rate of 3.4%. Using the combined technologies of Geographic Information Systems (GIS), remote sensing (RS) and Demography techniques as its methodology, this paper examines the environmental implications of rapid population growth on land use dynamics in Eleme between 1986 and 2015. The study reveals that between 1986 and 2006, Built-up area and Farmland increased by 72.67 and 12.77% respectively, while light and thick vegetation recorded a decrease of -6.92 and -61.64% respectively. Water body remains fairly constant with minimal changes. Also, between 2006 and 2015 covering a period of 9 years, Built-up area further increased by 53% with an annual growth rate of 2.32 km2 gaining more land area on the detriment of other land uses. Built-up area has an annual growth rate of 2.32km2 and is expected to increase from 18.67km2 in 2006 to 41.87km2 in 2016.The observed Land used/Land cover dynamics is derived by the demographic characteristics of the Study area. Eleme has a total area of 138km2 out of which the Federal Government of Nigeria compulsorily acquired an estimated area of 59.34km2 for industrial purposes excluding acquisitions by the Rivers State Government. It is evident from the findings of this study that the carrying capacity of Eleme ecosystem is under threat due to the current population growth and land consumption rates. Therefore, measures such as use of appropriate technologies in farming techniques, waste management; investment in family planning and female empowerment, maternal health and education, afforestation programs; and amendment of Land Use Act of 1978 are recommended.

Keywords: population growth, Eleme, land use, GIS and remote sensing

Procedia PDF Downloads 357
993 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design

Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad

Abstract:

In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.

Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method

Procedia PDF Downloads 217
992 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys

Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso

Abstract:

Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.

Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys

Procedia PDF Downloads 111
991 Factors Affecting Harvested Rain Water Quality and Quantity in Yatta Area, Palestine

Authors: Nibal Al-Batsh, Issam Al-Khatib, Subha Ghannam

Abstract:

Yatta is the study area for this research, located 9 km south of Hebron City in the West Bank in Palestine. It has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c.d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socio-economic importance in areas where water sources are scarce or polluted. The quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year long period. A total of 100 water samples were collected from (50 rainfed cisterns) with an average capacity of 69 m3, adjacent to cement-roof catchment with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, Alkalinity, Hardness, Turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Microbiological contents such as Total Coliforms (TC) and Fecal Coliforms (FC) bacteria were also analyzed. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters while revealing biological contamination. The pH values of mixed water ranged from 6.9 to 8.74 with a mean value of 7.6. collected Rainwater had lower pH values than mixed water ranging from 7.00 to 7.57 with a mean of 7.21. Rainwater also had lower average values of conductivity (389.11 µScm-1) compared to that of mixed water (463.74 µScm-1) thus indicating lower values of salinity (0.75%). The largest TDS value measured in rainwater was 316 mg/l with a mean of 199.86 mg /l. As far as microbiological quality is concerned, TC and FC were detected in 99%, 52% of collected rainwater samples, respectively. The research also addressed the impact of different socio-economic attributes on rainwater harvesting using information collected through a survey from the area. Results indicated that the majority of homeowners have the primary knowledge necessary to collect and store water in cisterns. Most of the respondents clean both the cisterns and the catchment areas. However, the research also arrives at a conclusion that cleaning is not done in a proper manner. Results show that cisterns with an operating capacity of 69 m3 would provide sufficient water to get through the dry summer months. However, the catchment area must exceed 146 m2 to produce sufficient water to fill a cistern of this size in a year receiving average precipitation.

Keywords: rainwater harvesting, runoff coefficient, water quality, microbiological contamination

Procedia PDF Downloads 258
990 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: expanded clay, direct shear test, triaxial test, shear properties, energy absorption

Procedia PDF Downloads 141