Search results for: medium density
1274 Studying the Photodegradation Behavior of Microplastics Released from Agricultural Plastic Products to the Farmland
Authors: Maryam Salehi, Gholamreza Bonyadinejad
Abstract:
The application of agricultural plastic products like mulch, greenhouse covers, and silage films is increasing due to their economic benefits in providing an early and better-quality harvest. In 2015, the 4 million tons (valued a 10.6 million USD) global market for agricultural plastic films was estimated to grow by 5.6% per year through 2030. Despite the short-term benefits provided by plastic products, their long-term sustainability issues and negative impacts on soil health are not well understood. After their removal from the field, some plastic residuals remain in the soil. Plastic residuals in farmlands may fragment to small particles called microplastics (d<5mm). The microplastics' exposure to solar radiation could alter their surface chemistry and make them susceptible to fragmentation. Thus, this study examined the photodegradation of low density polyethylene as the model microplastics that are released to the agriculture farmland. The variation of plastic’s surface chemistry, morphology, and bulk characteristics were studied after accelerated UV-A radiation experiments and sampling from an agricultural field. The Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) demonstrated the formation of oxidized surface functional groups onto the microplastics surface due to the photodegradation. The Differential Scanning Calorimetry (DSC) analysis revealed an increased crystallinity for the photodegraded microplastics compared to the new samples. The gel permeation chromatography (GPC) demonstrated the reduced molecular weight for the polymer due to the photodegradation. This study provides an important opportunity to advance understanding of soil pollution. Understanding the plastic residuals’ variations as they are left in the soil is providing a critical piece of information to better estimate the microplastics' impacts on environmental biodiversity, ecosystem sustainability, and food safety.Keywords: soil health, plastic pollution, sustainability, photodegradation
Procedia PDF Downloads 2201273 Business Model Innovation and Firm Performance: Exploring Moderation Effects
Authors: Mohammad-Ali Latifi, Harry Bouwman
Abstract:
Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.Keywords: business model innovation, firm performance, implementation, moderation
Procedia PDF Downloads 1201272 Effect of Sulphur Concentration on Microbial Population and Performance of a Methane Biofilter
Authors: Sonya Barzgar, J. Patrick, A. Hettiaratchi
Abstract:
Methane (CH4) is reputed as the second largest contributor to greenhouse effect with a global warming potential (GWP) of 34 related to carbon dioxide (CO2) over the 100-year horizon, so there is a growing interest in reducing the emissions of this gas. Methane biofiltration (MBF) is a cost effective technology for reducing low volume point source emissions of methane. In this technique, microbial oxidation of methane is carried out by methane-oxidizing bacteria (methanotrophs) which use methane as carbon and energy source. MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting methane to carbon dioxide (CO₂) and water (H₂O). Even though the biofiltration technique has been shown to be an efficient, practical and viable technology, the design and operational parameters, as well as the relevant microbial processes have not been investigated in depth. In particular, limited research has been done on the effects of sulphur on methane bio-oxidation. Since bacteria require a variety of nutrients for growth, to improve the performance of methane biofiltration, it is important to establish the input quantities of nutrients to be provided to the biofilter to ensure that nutrients are available to sustain the process. The study described in this paper was conducted with the aim of determining the influence of sulphur on methane elimination in a biofilter. In this study, a set of experimental measurements has been carried out to explore how the conversion of elemental sulphur could affect methane oxidation in terms of methanotrophs growth and system pH. Batch experiments with different concentrations of sulphur were performed while keeping the other parameters i.e. moisture content, methane concentration, oxygen level and also compost at their optimum level. The study revealed the tolerable limit of sulphur without any interference to the methane oxidation as well as the particular sulphur concentration leading to the greatest methane elimination capacity. Due to the sulphur oxidation, pH varies in a transient way which affects the microbial growth behavior. All methanotrophs are incapable of growth at pH values below 5.0 and thus apparently are unable to oxidize methane. Herein, the certain pH for the optimal growth of methanotrophic bacteria is obtained. Finally, monitoring methane concentration over time in the presence of sulphur is also presented for laboratory scale biofilters.Keywords: global warming, methane biofiltration (MBF), methane oxidation, methanotrophs, pH, sulphur
Procedia PDF Downloads 2361271 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop
Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.Keywords: Arbuscular mycorrhized fungi, biocontrol methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 4621270 Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland
Authors: Maria C. Proença, Maria T. Rebelo, Maria J. Alves, Sofia Cunha
Abstract:
Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature.Keywords: human health, risk assessment, risk management, vector-borne diseases
Procedia PDF Downloads 4191269 The Effects of Ultrasound on the Extraction of Ficus deltoidea Leaves
Authors: Nur Aimi Syairah Mohd Abdul Alim, Azilah Ajit, A. Z. Sulaiman
Abstract:
The present study aimed to investigate the effects of ultrasound-assisted extraction (UAE) on the extraction of Vitexin and Iso-Vitexin from Ficus deltoidea plants. In recent years, ultrasound technology has been found to be a potential herbal extraction technique. The passage of ultrasound energy in a liquid medium generates mechanical agitation and other physical effects due to acoustic cavitation. The main goal is to optimised ultrasonic-assisted extraction condition providing the highest extraction yield with the most desirable antioxidant activity and stability. Thus, a series of experiments has been developed to investigate the effect of ultrasound energy on the vegetal material and the implemented parameters by using HPLC-photodiode array detection. The influences of several experimental parameters on the ultrasonic extraction of Ficus deltoidea leaves were investigated: extraction time (1-8 h), solvent-to-water ratio (1:10 to 1:50), temperature (50–100 °C), duty cycle (10–continuous sonication) and intensity. The extracts at the optimized condition were compared with those obtained by conventional boiling extraction, in terms of bioactive constituents yield and chemical composition. The compounds of interest identified in the extracts were Vitexin and Isovitexin, which possess anti-diabetic, anti-oxidant and anti-cancer properties. Results showed that the main variables affecting the extraction process were temperature and time. Though in less extent, solvent-to-water ratio, duty cycle and intensity are also demonstrated to be important parameters. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested that ultrasonic-assisted extraction (UAE) is more efficient process as compared to conventional boiling extraction. It recommended that ultrasound extraction of Ficus deltoidea plants are feasible to replace the traditional time-consuming and low efficiency preparation procedure in the future modernized and commercialized manufacture of this highly valuable herbal medicine.Keywords: Ficus, ultrasounds, vitexin, isovitexin
Procedia PDF Downloads 4161268 Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes
Authors: Rene Hellmuth, Jorg Frohnmayer
Abstract:
The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1381267 Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India
Authors: B. Palanikumaran, N. Kanagaraj, M. Sangareswari, V. Sailaja, Kapil Sihag
Abstract:
The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations.Keywords: basal area, carbon sequestration, carbon stock, Nilgiri biosphere reserve
Procedia PDF Downloads 1691266 Family Health in Families with Children with Autism
Authors: Teresa Isabel Lozano Pérez, Sandra Soca Lozano
Abstract:
In Cuba, the childcare is one of the programs prioritized by the Ministry of Public Health and the birth of a child becomes a desired and rewarding event for the family, which is prepared for the reception of a healthy child. When this does not happen and after the first months of the child's birth begin to appear developmental deviations that indicate the presence of a disorder, the event becomes a live event potentially negative and generates disruptions in the family health. A quantitative, descriptive, and cross-sectional research methodology was conducted to describe the impact on family health of diagnosis of autism in a sample of 25 families of children diagnosed with infantile autism at the University Pediatric Hospital Juan Manuel Marquez Havana, Cuba; in the period between January 2014 and May 2015. The sample was non probabilistic and intentional from the inclusion criteria selected. As instruments, we used a survey to identify the structure of the family, life events inventory and an instrument to assess the relative impact, adaptive resources of family and social support perceived (IRFA) to identify the diagnosis of autism as life event. The main results indicated that the majority of families studied were nuclear, small and medium and in the formation stage. All households surveyed identified the diagnosis of autism in a child as an event of great importance and negative significance for the family, taking in most of the families studied a high impact on the four areas of family health and impact enhancer of involvement in family health. All the studied families do not have sufficient adaptive resources to face this situation, sensing that they received social support frequently, mainly in information and emotional areas. We conclude that the diagnosis of autism one of the members of the families studied is valued as a life event highly significant with unfavorably way causing an enhancer impact of involvement in family health especially in the areas ‘health’ and ‘socio-psychological’. Among the social support networks health institutions, partners and friends are highlighted. We recommend developing intervention strategies in families of these children to support them in the process of adapting the diagnosis.Keywords: family, family health, infantile autism, life event
Procedia PDF Downloads 4311265 Preparation and Sealing of Polymer Microchannels Using EB Lithography and Laser Welding
Authors: Ian Jones, Jonathan Griffiths
Abstract:
Laser welding offers the potential for making very precise joints in plastics products, both in terms of the joint location and the amount of heating applied. These methods have allowed the production of complex products such as microfluidic devices where channels and structure resolution below 100 µm is regularly used. However, to date, the dimension of welds made using lasers has been limited by the focus spot size that is achievable from the laser source. Theoretically, the minimum spot size possible from a laser is comparable to the wavelength of the radiation emitted. Practically, with reasonable focal length optics the spot size achievable is a few factors larger than this, and the melt zone in a plastics weld is larger again than this. The narrowest welds feasible to date have therefore been 10-20 µm wide using a near-infrared laser source. The aim of this work was to prepare laser absorber tracks and channels less than 10 µm wide in PMMA thermoplastic using EB lithography followed by sealing of channels using laser welding to carry out welds with widths of the order of 1 µm, below the resolution limit of the near-infrared laser used. Welded joints with a width of 1 µm have been achieved as well as channels with a width of 5 µm. The procedure was based on the principle of transmission laser welding using a thin coating of infrared absorbent material at the joint interface. The coating was patterned using electron-beam lithography to obtain the required resolution in a reproducible manner and that resolution was retained after the transmission laser welding process. The joint strength was ratified using larger scale samples. The results demonstrate that plastics products could be made with a high density of structure with resolution below 1 um, and that welding can be applied without excessively heating regions beyond the weld lines. This may be applied to smaller scale sensor and analysis chips, micro-bio and chemical reactors and to microelectronic packaging.Keywords: microchannels, polymer, EB lithography, laser welding
Procedia PDF Downloads 4021264 Seismic Inversion for Geothermal Exploration
Authors: E. N. Masri, E. Takács
Abstract:
Amplitude Versus Offset (AVO) and simultaneous model-based impedance inversion techniques have not been utilized for geothermal exploration commonly; however, some recent publications called the attention that they can be very useful in the geothermal investigations. In this study, we present rock physical attributes obtained from 3D pre-stack seismic data and well logs collected in a study area of the NW part of Pannonian Basin where the geothermal reservoir is located in the fractured zones of Triassic basement and it was hit by three productive-injection well pairs. The holes were planned very successfully based on the conventional 3D migrated stack volume prior to this study. Subsequently, the available geophysical-geological datasets provided a great opportunity to test modern inversion procedures in the same area. In this presentation, we provide a summary of the theory and application of the most promising seismic inversion techniques from the viewpoint of geothermal exploration. We demonstrate P- and S-wave impedance, as well as the velocity (Vp and Vs), the density, and the Vp/Vs ratio attribute volumes calculated from the seismic and well-logging data sets. After a detailed discussion, we conclude that P-wave impedance and Vp/Vp ratio are the most helpful parameters for lithology discrimination in the study area. They detect the hot water saturated fracture zone very well thus they can be very useful in mapping the investigated reservoir. Integrated interpretation of all the obtained rock-physical parameters is essential. We are extending the above discussed pre-stack seismic tools by studying the possibilities of Elastic Impedance Inversion (EII) for geothermal exploration. That procedure provides two other useful rock-physical properties, the compressibility and the rigidity (Lamé parameters). Results of those newly created elastic parameters will also be demonstrated in the presentation. Geothermal extraction is of great interest nowadays; and we can adopt several methods have been successfully applied in the hydrocarbon exploration for decades to discover new reservoirs and reduce drilling risk and cost.Keywords: fractured zone, seismic, well-logging, inversion
Procedia PDF Downloads 1261263 Integration of Design Management in the Product Development Process in SME's
Authors: Vitor Carneiro, Augusto Barata Da Rocha, Barbara Rangel, Jorge Lino Alves
Abstract:
In the European Union countries, Small and Medium-Sized Enterprises (SME’s) have an important contribution to economic activity and to the Gross Domestic Product (GDP). The implementation of design practices in SME’s is often a difficult task due to resources limitations. Unlike large companies, their product development and innovation processes frequentlylack adequate planning and systematic procedures. Design management interest has grown exponentially in recent years, but as it is a recent topic there is an absence of systematic methodologies to implement design management in SME’s with little or no design experience. This work presents a contribution to improve and optimize the process of design integration and management in SME’s. A review analysis is presented to select relevant articles on the subject, review and classify the main published contributions. Based on the selected articles content it was possible to identify five main themes related to the subject under analysis: Design Function Organization, Design Management Integration, Design Management Capabilities, Managing Design Projects, and Tools and Methods. Design management is discussed from different perspectives depending on the focus on which it is placed, whether in a design or management perspective, leading to different visions and definitions: from a more upstream strand at the intersection of design and the organization's strategic management (strategic design management) to a more downstream strand related to project management and design process (design management operational). The review analysis of the selected articles allowed the identification of a high level of complexity of connections and parameters in the design management during the product development process in the context of SME’s. Within each group of the five main themes, several sub-themes, directly or indirectly related, should be considered.Sub-connections also occur between sub-themes of different themes creating a complex and intricate web of connections. This complexity of connections is often the main obstacle to conduct design management and product development efficiently. This work proposes a formulation of a systematic methodological approach to optimize the integrated project and the management and control of the product development process among SME's. The implementation of this formulation will improve the integration of design management in the product development and innovation process in SME’s.Keywords: design management, product development, product innovation, SME’s.
Procedia PDF Downloads 2221262 Correlations among Their Characteristics and Determination of Some Morphological Characteristics of Perennial Ryegrass Genotypes
Authors: Abdullah Özköse, Ahmet Tamkoç
Abstract:
This study aimed to determine some plant characteristics of perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara and correlations between these characteristics. In order to evaluate for breeding purposes according to Turkey's environmental conditions, perennial ryegrass plants collected from natural pasture of Ankara at 2004 were utilized. The collected seeds of plants were sown in pots and seedlings were prepared in greenhouse. Seedlings were transplanted to the experimental field at 50x50 cm intervals in Randomized Complete Blocks Design in 2005. Data were obtained from the observations and measurements of 568 perennial ryegrasses in 2007 and 2008. Perennial ryegrass plants’ in the spring re-growth time, color, density, growth habit, tendency to inflorescences, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike, and 1000 grain weight were investigated and correlation analyses were made on the data. Correlation coefficients were estimated between all paired combinations of the traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with growth habit and in the spring re-growth time spring.Keywords: correlation, morphological traits, Lolium perenne
Procedia PDF Downloads 4551261 DFT and SCAPS Analysis of an Efficient Lead-Free Inorganic CsSnI₃ Based Perovskite Solar Cell by Modification of Hole Transporting Layer
Authors: Seyedeh Mozhgan Seyed Talebi, Chih -Hao Lee
Abstract:
With an abrupt rise in the power conservation efficiency (PCE) of perovskite solar cells (PSCs) within a short span of time, the toxicity of lead was raised as a major hurdle in the path toward their commercialization. In the present research, a systematic investigation of the electrical and optical characteristics of the all-inorganic CsSnI₃ perovskite absorber layer was performed with the Vienna Ab Initio Simulation Package (VASP) using the projector-augmented wave method. The presence of inorganic halide perovskite offers the advantages of enhancing the degradation resistance of the device, reducing the cost of cells, and minimizing the recombination of generated carriers. The simulated standard device using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves FTO/n-TiO₂/CsSnI₃ Perovskite absorber/Spiro OmeTAD HTL/Au contact layer. The variation in the device design key parameters such as the thickness and defect density of perovskite absorber, hole transport layer and electron transport layer and interfacial defects are examined with their impact on the photovoltaic characteristic parameters. The effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnI3-based perovskite devices is also investigated. The optimized standard device at room temperature shows the highest PCE of 25.18 % with FF of 75.71 %, Voc of 0.96 V, and Jsc of 34.67 mA/cm². The outcomes and interpretation of different inorganic Cu-based HTLs presence, such as CuSCN, Cu₂O, CuO, CuI, SrCu₂O₂, and CuSbS₂, here represent a critical avenue for the possibility of fabricating high PCE perovskite devices made of stable, low-cost, efficient, safe, and eco-friendly all-inorganic materials like CsSnI₃ perovskite light absorber.Keywords: CsSnI₃, hole transporting layer (HTL), lead-free perovskite solar cell, SCAPS-1D software
Procedia PDF Downloads 871260 Performance of Different Biodegradable Waxes Based Specialized Pheromone and Lure Application Technology-Male Anhelation Technique-Cue Lure Formulations in Bittergourd Field against Bactrocera cucurbitae
Authors: Amna Jalal, Muhammad Dildar Gogi, Muhammad Jalal Arif, Anum Tariq, Waleed Afzal Naveed, Talha Farooq, Mubashir Iqbal, Muhammad Junaid Nisar
Abstract:
Melon fruit flies (Diptera: Tephritidae: Dacinae) are economically important pests of the cucurbits and are geographically distributed throughout the tropics and subtropics of the world. It causes heavy quantitative and qualitative losses in bitter gourd. The present experiment was carried out to evaluate the performance of different biodegradable waxes based SPLAT-MAT-CL (Specialized Pheromone and Lure Application Technology-Male Anhelation Technique- Cue Lure) formulations in bitter gourd field. Fourteen SPLAT-MAT emulsions/formulations were prepared by admixing different SPLAT matrices with toxicant (spinosad) and sex pheromone cuelure (attractant) in different proportionate percentage by weight. The results revealed that attraction and trapping of fruit flies of B. cucurbitae varied significantly for different SPLAT-MAT-CL formulations (p < 0.05). The maximum B. cucurbitae males were trapped in SPLAT-MAT-CL-7 (60 flies/trap/day) followed by SPLAT-MAT-CL-9 (40 flies/trap/day). The performance of all other formulations of SPLAT-MAT-CL was found in the order of SPLAT-MAT-CL-8 (30 flies/trap/day) > SPLAT-MAT-CL-3 (28 flies/trap/day) > SPLAT-MAT-CL-5 (25 flies/trap/day) > SPLAT-MAT-CL-4 (22 flies/trap/day) > SPLAT-MAT-CL-12 (20 flies/trap/day) SPLAT-MAT-CL-2 (19 flies/trap/day) > SPLAT-MAT-CL-14 (17 flies/trap/day) > SPLAT-MAT-CL-13 (15 flies/trap/day) > SPLAT-MAT-CL-11 (10 flies/trap/day) > SPLAT-MAT-CL-1 (8 flies/trap/day) > SPLAT-MAT-CL-10 (02 flies/trap/day). Overall, all the SPLAT-MAT-CL formulations, except SPLAT-MAT-CL-10, demonstrated higher density of captures of B. cucurbitae males as compared to standard (06 flies/trap/day). The results also demonstrate that SPLAT-MAT-CL-7, SPLAT-MAT-CL-9, SPLAT-MAT-CL-8, SPLAT-MAT-CL-3, SPLAT-MAT-CL-5, SPLAT-MAT-CL-4, SPLAT-MAT-CL-12, SPLAT-MAT-CL-2, SPLAT-MAT-CL-14, SPLAT-MAT-CL-13, SPLAT-MAT-CL-11 and SPLAT-MAT-CL-1 explained approximately 5, 4.6, 4.1, 3.6, 3.3, 3.1,2.8,2.5 and 1.6 times higher captures of B. cucurbitae males over standards. However, SPLAT-MAT-CL-10 demonstrated 3 times fewer captures of B. cucurbitae males over standards. In conclusion, SPLAT-MAT-CL-7, SPLAT-MAT-CL-9 can be exploited for the monitoring and trapping of B. cucurbitae in its IPM of program.Keywords: attractancy, field conditions, melon fruit fly, SPLAT-MAT-CL
Procedia PDF Downloads 2681259 Didactic Suitability and Mathematics Through Robotics and 3D Printing
Authors: Blanco T. F., Fernández-López A.
Abstract:
Nowadays, education, motivated by the new demands of the 21st century, acquires a dimension that converts the skills that new generations may need into a huge and uncertain set of knowledge too broad to be entirety covered. Within this set, and as tools to reach them, we find Learning and Knowledge Technologies (LKT). Thus, in order to prepare students for an everchanging society in which the technological boom involves everything, it is essential to develop digital competence. Nevertheless LKT seems not to have found their place in the educational system. This work is aimed to go a step further in the research of the most appropriate procedures and resources for technological integration in the classroom. The main objective of this exploratory study is to analyze the didactic suitability (epistemic, cognitive, affective, interactional, mediational and ecological) for teaching and learning processes of mathematics with robotics and 3D printing. The analysis carried out is drawn from a STEAM (Science, Technology, Engineering, Art and Mathematics) project that has the Pilgrimage way to Santiago de Compostela as a common thread. The sample is made up of 25 Primary Education students (10 and 11 years old). A qualitative design research methodology has been followed, the sessions have been distributed according to the type of technology applied. Robotics has been focused towards learning two-dimensional mathematical notions while 3D design and printing have been oriented towards three-dimensional concepts. The data collection instruments used are evaluation rubrics, recordings, field notebooks and participant observation. Indicators of didactic suitability proposed by Godino (2013) have been used for the analysis of the data. In general, the results show a medium-high level of didactic suitability. Above these, a high mediational and cognitive suitability stands out, which led to a better understanding of the positions and relationships of three-dimensional bodies in space and the concept of angle. With regard to the other indicators of the didactic suitability, it should be noted that the interactional suitability would require more attention and the affective suitability a deeper study. In conclusion, the research has revealed great expectations around the combination of teaching-learning processes of mathematics and LKT. Although there is still a long way to go in terms of the provision of means and teacher training.Keywords: 3D printing, didactic suitability, educational design, robotics
Procedia PDF Downloads 1041258 A Study on the Construction Process and Sustainable Renewal Development of High-Rise Residential Areas in Chongqing (1978-2023)
Authors: Xiaoting Jing, Ling Huang
Abstract:
After the reform and opening up, Chongqing has formed far more high-rise residential areas than other cities in its more than 40 years of urban construction. High-rise residential areas have become one of the main modern living models in Chongqing and an important carrier reflecting the city's high quality of life. Reviewing the construction process and renewal work helps understand the characteristics of high-rise residential areas in Chongqing at different stages, clarify current development demands, and look forward to the focus of future renewal work. Based on socio-economic development and policy background, the article sorts the construction process of high-rise residential areas in Chongqing into four stages: the early experimental construction period of high-rise residential areas (1978-1996), the rapid start-up period of high-rise commodity housing construction (1997-2006), the large-scale construction period of high-rise commodity housing and public rental housing (2007-2014), and the period of renewal and renovation of high-rise residential areas and step-by-step construction of quality commodity housing (2015-present). Based on the construction demands and main construction types of each stage, the article summarizes that the construction of high-rise residential areas in Chongqing features large scale, high speed, and high density. It points out that a large number of high-rise residential areas built after 2000 will become important objects of renewal and renovation in the future. Based on existing renewal work experience, it is urgent to explore a path for sustainable renewal and development in terms of policy mechanisms, digital supervision, and renewal and renovation models, leading the high-rise living in Chongqing toward high-quality development.Keywords: high-rise residential areas, construction process, renewal and renovation, Chongqing
Procedia PDF Downloads 681257 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage
Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo
Abstract:
Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.Keywords: kaolinite, microencapsulation, PCM, thermal energy storage
Procedia PDF Downloads 1301256 Prevalence of Down Syndrome: A Single-Center Study in Bandung, Indonesia
Authors: Bremmy Laksono, Riksa Parikrama, Nur A. Rosyada, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani
Abstract:
Down syndrome (DS) is a chromosomal abnormality characterised by complete 21 chromosome trisomy (classical or non-disjunction), or partial 21 chromosome trisomy (mosaicism), or chromosome rearrangement involving chromosome 21 (translocation). This study was carried out to describe the frequency of DS patients in a research institution in the city of Bandung, Indonesia. This descriptive study also provides a picture of the residential location and surrounding area of their dwellings. This study involved people with DS in various age whose chromosome were evaluated by conventional karyotyping method and FISH. Data were collected from 60 patients with DS from a total 150 patients during the period of September 2015 to August 2016 who were referred to Cell Culture and Cytogenetics Laboratory, Faculty of Medicine Universitas Padjadjaran, Indonesia. Results showed that the most common type of DS was non-disjunction (93%), followed by mosaicism (5%), no patient with translocation DS (0%), and a very rare type of tetrasomy 21 (2%). There were 39 males (65%) and 21 females (35%) of DS patient. Most of them live in suburban area beyond Bandung city (55%) while the rest live inside urban area of Bandung city (45%). They live mostly in dense area of greater Bandung area (65%) and only a few live in mid-density area (25%) and the least live in sparse populated area (10%). Their houses are mostly located in residential estate area (55%), nearby industrial area (37%), and around agricultural area (8%). Based on the study, it could be concluded that non-disjunction DS is the most common type. DS patients referred to the laboratory mostly came from dense residential zone in suburban area outside Bandung city. The low number of DS patients referred to the laboratory for chromosome analysis was the highlight to improve health service for people with genetic disorder. This study offered several information regarding area of DS patients’ residence and the condition of neighbourhood in Bandung city where they live as well.Keywords: chromosome, descriptive, Down syndrome, prevalence
Procedia PDF Downloads 2801255 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.Keywords: asphalt, basalt, pavement, recycled aggregate
Procedia PDF Downloads 1641254 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering
Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei
Abstract:
Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation
Procedia PDF Downloads 2521253 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China
Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek
Abstract:
Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates
Procedia PDF Downloads 2851252 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 551251 Maximum Power and Bone Variables in Young Adult Men
Authors: Anthony Khawaja, Jacques Prioux, Ghassan Maalouf, Rawad El Hage
Abstract:
The regular practice of physical activities characterized by significant mechanical stresses stimulates bone formation and improves bone mineral density (BMD) in the most solicited sites. The purpose of this study was to explore the relationships between maximum power and bone variables in a group of young adult men. Identification of new determinants of BMD, bone mineral content (BMC) and hip geometric indices in young adult men, would allow screening and early management of future cases of osteopenia and osteoporosis. Fifty-three young adult men (18 – 35yr) voluntarily participated in this study. Weight and height were measured, and body mass index was calculated. Body composition, BMC and BMD were determined for each individual by Dual-energy X-ray absorptiometry (DXA; GE Healthcare, Madison, WI) at whole body (WB), lumbar spine (L1-L4), total hip (TH), and femoral neck (FN). FN cross-sectional area (CSA), strength index (SI), buckling ratio (BR), FN section modulus (Z), cross-sectional moment of inertia (CSMI) and L1-L4 TBS were also evaluated by DXA. The vertical jump was evaluated using a field test (sargent test). Two main parameters were retained: vertical jump performance (cm) and power (w). The subjects performed three jumps with 2 minutes of recovery between jumps. The highest vertical jump was selected. Maximum power (P max, in watts) was calculated. Maximum power was positively correlated to WB BMD (r = 0.41; p < 0.01), WB BMC (r = 0.65; p < 0.001), L1-L4 BMC (r = 0.54; p < 0.001), FN BMC (r = 0.35; p < 0.01), TH BMC (r = 0.50; p < 0.001), CSMI (r = 0.50; p < 0.001), CSA (r = 0.33; p < 0.05). Vertical jump was positively correlated to WB BMC (r = 0.31; p < 0.05), L1-L4 BMC (r = 0.40; p < 0.01), CSMI (r = 0.29; p < 0.05). The current study suggests that maximum power is a positive determinant of BMD, BMC and hip geometric indices in young adult men. In addition, it shows also that maximum power is a stronger positive determinant of bone variables than vertical jump in this population. Implementing strategies to increase maximum power in young adult men may be useful for preventing osteoporotic fractures later in life.Keywords: bone variables, maximum power, osteopenia, osteoporosis, vertical jump, young adult men
Procedia PDF Downloads 1781250 Kinetics and Toxicological Effects of Kickxia elatine Extract-Based Silver Nanoparticles on Rat Brain Acetylcholinesterase
Authors: Noor Ul Huda, Mushtaq Ahmed, Nadia Mushtaq, Naila Sher, Rahmat Ali Khan
Abstract:
Purpose: The green synthesis of AgNPs has been favored over chemical synthesis due to their distinctive properties such as high dispersion, surface-to-volume ratio, low toxicity, and easy preparation. In the present work, the biosynthesis of AgNPs (KE-AgNPs) was carried out in one step by using the traditionally used plant Kickxia elatine (KE) extract and then investigated its enzyme inhibiting activity against rat’s brain acetylcholinesterase (AChE) in vitro. Methods: KE-AgNPs were synthesized from 1mM AgNO₃ using KE extract and characterized by UV–spectroscopy, SEM, EDX, XRD, and FTIR analysis. Rat’s brain acetylcholinesterase (AChE) inhibition activity was evaluated by the standard protocol. Results: UV–spectrum at 416 nm confirmed the formation of KE-AgNPs. X-ray diffraction (XRD) pattern presented 2θ values corresponding to the crystalline nature of KE-AgNPs with an average size of 42.47nm. The scanning electron microscope (SEM) analysis confirmed the presence of spherical-shaped and huge density KE-AgNPs with a size of 50nm. Fourier transform infrared spectroscopy (FT-IR) suggested that the functional groups present in KE extract and on the surface of KE-AgNPs are responsible for the stability of biosynthesized NPs. Energy dispersive X-ray (EDX) displayed an intense sharp peak at 3.2 keV, presenting that Ag was the chief element with 61.67%. Both KE extract and KE-AgNPs showed good and potent anti-AChE activity, with higher inhibition potential at a concentration of 175 µg/ml. Statistical analysis showed that both KEE and AgNPs exhibited non-competitive type inhibition against AChE, i.e., Vmax decreased (34.17-68.64% and 22.29- 62.10%) in the concentration-dependent mode for KEE and KE-AgNPs respectively and while Km values remained constant. Conclusions: KEE and KE-AgNPs can be considered an inhibitor of rats’ brain AChE, and the synthesis of KE-AgNPs-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.Keywords: Kickxia elatine, AgNPs, brain homogenate, acetylcholinesterase, kinetics
Procedia PDF Downloads 1211249 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application
Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius
Abstract:
Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural
Procedia PDF Downloads 1421248 Impact of Geomagnetic Storm on Ionosphere
Authors: Affan Ahmed
Abstract:
This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling
Procedia PDF Downloads 01247 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease
Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh
Abstract:
Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients
Procedia PDF Downloads 4151246 Maximizing Giant Prawn Resource Utilization in Banjar Regency, Indonesia: A CPUE and MSY Analysis
Authors: Ahmadi, Iriansyah, Raihana Yahman
Abstract:
The giant freshwater prawn (Macrobrachium rosenbergii de Man, 1879) is a valuable species for fisheries and aquaculture, especially in Southeast Asia, including Indonesia due to their high market demand and potential for export. The growing demand for prawns is straining the sustainability of the Banjar Regency fishery. To ensure the long-term sustainability and economic viability of the prawn fishing in this region, it is imperative to implement evidence-based management practices. This requires comprehensive data on the Catch per Unit Effort (CPUE), Maximum Sustainable Yield (MSY) and the current rate of prawn resource exploitation. it analyzed five years of prawn catch data (2019-2023) obtained from South Kalimantan Marine and Fisheries Services. Fishing gears (e.g. hook & line and cast net) were first standardized with Fishing Power Index, and then calculated effort and MSY. The intercept (a) and the slope (b) values of regression curve were used to estimate the catch-maximum sustainable yield (CMSY) and optimal fishing effort (Fopt) levels within the framework of the Surplus Production Model. The estimated rates of resource utilization were then compared to the criteria of The National Commission of Marine Fish Stock Assessment. The findings showed that the CPUE value peaked in 2019 at 33.48 kg/trip, while the lowest value observed in 2022 at 5.12 kg/trip. The CMSY value was estimated to be 17,396 kg/year, corresponding to the Fopt level of 1,636 trips/year. The highest utilization rate was 56.90% recorded in 2020, while the lowest rate was observed in 2021 at 46.16%. The annual utilization rates were classified as “medium”, suggesting that increasing fishing effort by 45% could potentially maximize prawn catches at an optimum level. These findings provide a baseline for sustainable fisheries management in the region.Keywords: giant prawns, CPUE, fishing power index, sustainable potential, utilization rate
Procedia PDF Downloads 161245 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa
Authors: Zohreh Bayat, Dariush Minai-Tehrani
Abstract:
Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.Keywords: Pseudomonas aeruginosa, drug, enzyme, inhibition
Procedia PDF Downloads 434