Search results for: cardiac imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1642

Search results for: cardiac imaging

1222 Is the Addition of Computed Tomography with Angiography Superior to a Non-Contrast Neuroimaging Only Strategy for Patients with Suspected Stroke or Transient Ischemic Attack Presenting to the Emergency Department?

Authors: Alisha M. Ebrahim, Bijoy K. Menon, Eddy Lang, Shelagh B. Coutts, Katie Lin

Abstract:

Introduction: Frontline emergency physicians require clear and evidence-based approaches to guide neuroimaging investigations for patients presenting with suspected acute stroke or transient ischemic attack (TIA). Various forms of computed tomography (CT) are currently available for initial investigation, including non-contrast CT (NCCT), CT angiography head and neck (CTA), and CT perfusion (CTP). However, there is uncertainty around optimal imaging choice for cost-effectiveness, particularly for minor or resolved neurological symptoms. In addition to the cost of CTA and CTP testing, there is also a concern for increased incidental findings, which may contribute to the burden of overdiagnosis. Methods: In this cross-sectional observational study, analysis was conducted on 586 anonymized triage and diagnostic imaging (DI) reports for neuroimaging orders completed on patients presenting to adult emergency departments (EDs) with a suspected stroke or TIA from January-December 2019. The primary outcome of interest is the diagnostic yield of NCCT+CTA compared to NCCT alone for patients presenting to urban academic EDs with Canadian Emergency Department Information System (CEDIS) complaints of “symptoms of stroke” (specifically acute stroke and TIA indications). DI reports were coded into 4 pre-specified categories (endorsed by a panel of stroke experts): no abnormalities, clinically significant findings (requiring immediate or follow-up clinical action), incidental findings (not meeting prespecified criteria for clinical significance), and both significant and incidental findings. Standard descriptive statistics were performed. A two-sided p-value <0.05 was considered significant. Results: 75% of patients received NCCT+CTA imaging, 21% received NCCT alone, and 4% received NCCT+CTA+CTP. The diagnostic yield of NCCT+CTA imaging for prespecified clinically significant findings was 24%, compared to only 9% in those who received NCCT alone. The proportion of incidental findings was 30% in the NCCT only group and 32% in the NCCT+CTA group. CTP did not significantly increase the yield of significant or incidental findings. Conclusion: In this cohort of patients presenting with suspected stroke or TIA, an NCCT+CTA neuroimaging strategy had a higher diagnostic yield for clinically significant findings than NCCT alone without significantly increasing the number of incidental findings identified.

Keywords: stroke, diagnostic yield, neuroimaging, emergency department, CT

Procedia PDF Downloads 78
1221 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 79
1220 Subjective versus Objective Assessment for Magnetic Resonance (MR) Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: medical resonance (MR) images, difference mean opinion score (DMOS), full reference image quality assessment (FR-IQA)

Procedia PDF Downloads 436
1219 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 143
1218 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 64
1217 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 128
1216 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 394
1215 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 62
1214 Correlation of Serum Ferritin and Left Ventricular Function in Beta Thalassemia Major Patients with Increased Transfusion Dependence

Authors: Amna Imtiaz

Abstract:

Aims: To correlate serum ferritin with left ventricular function in beta thalassemia major patients with increased transfusion dependence and to find out whether echocardiography can be used to assess pre clinical cardiac disease in these patients. Methods: The cross sectional study was conducted at Department of Pathology, Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad. 60 patients of beta thalassemia major with increased transfusion dependence were enrolled in this study. Serum ferritin levels of all patients were measured by using indirect enzyme linked immunosorbent assay (ELISA). Echocardiography was performed on all patients by a consultant cardiologist by linking conventional echocardiography with tissue Doppler imaging. Ejection fraction and E/A ratio were measured in all patients to assess left ventricular systolic and diastolic function. Results: On the basis of serum ferritin level, patients were divided into three groups. Group I consisted of patients having serum ferritin level equal to or less than 2500 ng/ml. A total of 25 patients were placed in this group. Group II included patients having serum ferritin level between 2500 to 5000 ng/ml. A total of 22 patients were placed in this group. Group III included patients having serum ferritin level more than 5000 ng/ml. This group consisted of 13 patients. All patients having serum ferritin below 2500ng/ml had normal systolic function, and only 16% of the patients in this group had diastolic dysfunction as reflected by abnormal E/A ratio. In group II, 27% of the patients had systolic dysfunction reflected by subnormal ejection fraction while 40% of the patients had diastolic dysfunction. In group III, 62% of the patients had abnormal systolic and diastolic function. Pearson correlation was used to find a correlation between serum ferritin and left ventricular function. A strong negative correlation was found which is reflected by a p value of less than 0.05 which is significant. Chi square test is used to correlate serum ferritin with E/A ratio. P value came out to be less than 0.05 which is significant.

Keywords: beta thalassemia major, left ventricular function, serum ferritin, transfusion dependence

Procedia PDF Downloads 162
1213 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 169
1212 A Four Free Element Radiofrequency Coil with High B₁ Homogeneity for Magnetic Resonance Imaging

Authors: Khalid Al-Snaie

Abstract:

In this paper, the design and the testing of a symmetrical radiofrequency prototype coil with high B₁ magnetic field homogeneity are presented. The developed coil comprises four tuned coaxial circular loops that can produce a relatively homogeneous radiofrequency field. In comparison with a standard Helmholtz pair that provides 2nd-order homogeneity, it aims to provide fourth-order homogeneity of the B₁ field while preserving the simplicity of implementation. Electrical modeling of the probe, including all couplings, is used to ensure these requirements. Results of comparison tests, in free space and in a spectro-imager, between a standard Helmholtz pair and the presented prototype coil are introduced. In terms of field homogeneity, an improvement of 30% is observed. Moreover, the proposed prototype coil possesses a better quality factor (+25% on average) and a noticeable improvement in sensitivity (+20%). Overall, this work, which includes both theoretical and experimental aspects, aims to contribute to the study and understanding of four-element radio frequency (RF) systems derived from Helmholtz coils for Magnetic Resonance Imaging

Keywords: B₁ homogeneity, MRI, NMR, radiofrequency, RF coil, free element systems

Procedia PDF Downloads 60
1211 An Audit on the Quality of Pre-Operative Intra-Oral Digital Radiographs Taken for Dental Extractions in a General Practice Setting

Authors: Gabrielle O'Donoghue

Abstract:

Background: Pre-operative radiographs facilitate assessment and treatment planning in minor oral surgery. Quality assurance for dental radiography advocates the As Low As Reasonably Achievable (ALARA) principle in collecting accurate diagnostic information. Aims: To audit the quality of digital intraoral periapicals (IOPAs) taken prior to dental extractions in a metropolitan general dental practice setting. Standards: The National Radiological Protection Board (NRPB) guidance outlines three grades of radiograph quality: excellent (Grade 1 > 70% of total exposures), diagnostically acceptable (Grade 2 <20%), and unacceptable (Grade 3 <10%). Methodology: A study of pre-operative radiographs taken prior to dental extractions across 12 private general dental practices in a large metropolitan area by 44 practitioners. A total of 725 extractions were assessed, allowing 258 IOPAs to be reviewed in one audit cycle. Results: First cycle: Of 258 IOPAs: 223(86.4%) scored Grade 1, 27(10.5%) Grade 2, and 8(3.1%) Grade 3. The standard was met. 35 dental extractions were performed without an available pre-operative radiograph. Action Plan & Recommendations: Results were distributed to all staff and a continuous professional development evening organized to outline recommendations to improve image quality. A second audit cycle is proposed at a six-month interval to review the recommendations and appraise results. Conclusion: The overall standard of radiographs met the published guidelines. A significant improvement in the number of procedures undertaken without pre-operative imaging is expected at a six-month interval period. An investigation into undiagnostic imaging and associated adverse patient outcomes is being considered. Maintenance of the standards achieved is predicted in the second audit cycle to ensure consistent high quality imaging.

Keywords: audit, oral radiology, oral surgery, periapical radiographs, quality assurance

Procedia PDF Downloads 140
1210 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 97
1209 Generation Y Leaders in Radiology Nursing - Changing the Culture by Understanding the Challenges of a Multi-Generational Workforce

Authors: Amie Smith, Jodi-Lyn Benjamin

Abstract:

In 2020, there are currently four generations in the nursing workforce: The Veterans, Boomers, Generation X and Generation Y (Gen Y). Understanding each generation and their growing needs will equip the workforce for when the Boomers prepare for retirement, with majority of nursing leadership positions to be potentially replaced with Gen Y nurses. In SA Medical Imaging(SAMI), at Flinders Medical Centre (FMC), it has been proven that despite challenges in succession planning, Gen Y nurse leaders are able to overcome these obstacles and provide the leadership necessary to meet the changing needs in healthcare and across organisations. Changing the culture in radiology nursing has been seen as an obstacle due to the historical nursing practices and resistance to adapt to current/future practice. As radiology advances so does the role of the nurse in imaging, this has required resilience and strong support through leadership as we change and develop the culture to keep up with the evolution of technology and standard of patient care. As a result of supporting Gen Y nurses in leadership roles, SAMI, FMC has seen a positive change in culture by creating a healthy work environment which has allowed Gen Y nurses to make long lasting contributions to the nursing profession.

Keywords: changing culture, Generation Y, radiology, nursing, leadership

Procedia PDF Downloads 113
1208 Genetically Encoded Tool with Time-Resolved Fluorescence Readout for the Calcium Concentration Measurement

Authors: Tatiana R. Simonyan, Elena A. Protasova, Anastasia V. Mamontova, Eugene G. Maksimov, Konstantin A. Lukyanov, Alexey M. Bogdanov

Abstract:

Here, we describe two variants of the calcium indicators based on the GCaMP sensitive core and BrUSLEE fluorescent protein (GCaMP-BrUSLEE and GCaMP-BrUSLEE-145). In contrast to the conventional GCaMP6-family indicators, these fluorophores are characterized by the well-marked responsiveness of their fluorescence decay kinetics to external calcium concentration both in vitro and in cellulo. Specifically, we show that the purified GCaMP-BrUSLEE and GCaMP-BrUSLEE-145 exhibit three-component fluorescence decay kinetics, with the amplitude-normalized lifetime component (t3*A3) of GCaMP-BrUSLEE-145 changing four-fold (500-2000 a.u.) in response to a Ca²⁺ concentration shift in the range of 0—350 nM. Time-resolved fluorescence microscopy of live cells displays the two-fold change of the GCaMP-BrUSLEE-145 mean lifetime upon histamine-stimulated calcium release. The aforementioned Ca²⁺-dependence calls considering the GCaMP-BrUSLEE-145 as a prospective Ca²⁺-indicator with the signal read-out in the time domain.

Keywords: calcium imaging, fluorescence lifetime imaging microscopy, fluorescent proteins, genetically encoded indicators

Procedia PDF Downloads 125
1207 Age-Dependent Anatomical Abnormalities of the Amygdala in Autism Spectrum Disorder and their Implications for Altered Socio-Emotional Development

Authors: Gabriele Barrocas, Habon Issa

Abstract:

The amygdala is one of various brain regions that tend to be pathological in individuals with autism spectrum disorder (ASD). ASD is a prevalent and heterogeneous developmental disorder affecting all ethnic and socioeconomic groups and consists of a broad range of severity, etiology, and behavioral symptoms. Common features of ASD include but are not limited to repetitive behaviors, obsessive interests, and anxiety. Neuroscientists view the amygdala as the core of the neural system that regulates behavioral responses to anxiogenic and threatening stimuli. Despite this consensus, many previous studies and literature reviews on the amygdala’s alterations in individuals with ASD have reported inconsistent findings. In this review, we will address these conflicts by highlighting recent studies which reveal that anatomical and related socio-emotional differences detected between individuals with and without ASD are highly age-dependent. We will specifically discuss studies using functional magnetic resonance imaging (fMRI), structural MRI, and diffusion tensor imaging (DTI) to provide insights into the neuroanatomical substrates of ASD across development, with a focus on amygdala volumes, cell densities, and connectivity.

Keywords: autism, amygdala, development, abnormalities

Procedia PDF Downloads 98
1206 A Lightning Strike Mimic: The Abusive Use of Dog Shock Collar Presents as Encephalopathy, Respiratory Arrest, Cardiogenic Shock, Severe Hypernatremia, Rhabdomyolysis, and Multiorgan Injury

Authors: Merrick Lopez, Aashish Abraham, Melissa Egge, Marissa Hood, Jui Shah

Abstract:

A 3 year old male with unknown medical history presented initially with encephalopathy, intubated for respiratory failure, and admitted to the pediatric intensive care unit (PICU) with refractory shock. During resuscitation in the emergency department, he was found to be in severe metabolic acidosis with a pH of 7.03 and escalated on vasopressor drips for hypotension. His initial sodium was 174. He was noted to have burn injuries to his scalp, forehead, right axilla, bilateral arm creases and lower legs. He had rhabdomyolysis (initial creatinine kinase 5,430 U/L with peak levels of 62,340 normal <335 U/L), cardiac injury (initial troponin 88 ng/L with peak at 145 ng/L, normal <15ng/L), hypernatremia (peak 174, normal 140), hypocalcemia, liver injury, acute kidney injury, and neuronal loss on magnetic resonance imaging (MRI). Soft restraints and a shock collar were found in the home. He was critically ill for 8 days, but was gradually weaned off drips, extubated, and started on feeds. Discussion Electrical injury, specifically lightning injury is an uncommon but devastating cause of injury in pediatric patients. This patient with suspected abusive use of a dog shock collar presented similar to a lightning strike. Common entrance points include the hands and head, similar to our patient with linear wounds on his forehead. When current enters, it passes through tissues with the least resistance. Nerves, blood vessels, and muscles, have high fluid and electrolyte content and are commonly affected. Exit points are extremities: our child who had circumferential burns around his arm creases and ankles. Linear burns preferentially follow areas of high sweat concentration, and are thought to be due to vaporization of water on the skin’s surface. The most common cause of death from a lightning strike is due to cardiopulmonary arrest. The massive depolarization of the myocardium can result in arrhythmias and myocardial necrosis. The patient presented in cardiogenic shock with evident cardiac damage. Electricity going through vessels can lead to vaporization of intravascular water. This can explain his severe hypernatremia. He also sustained other internal organ injuries (adrenal glands, pancreas, liver, and kidney). Electrical discharge also leads to direct skeletal muscle injury in addition to prolonged muscular spasm. Rhabdomyolysis, the acute damage of muscle, leads to release of potentially toxic components into the circulation which could lead to acute renal failure. The patient had severe rhabdomyolysis and renal injury. Early hypocalcemia has been consistently demonstrated in patients with rhabdomyolysis. This was present in the patient and led to increased vasopressor needs. Central nervous system injuries are also common which can include encephalopathy, hypoxic injury, and cerebral infarction. The patient had evidence of brain injury as seen on MRI. Conclusion Electrical injuries due to lightning strikes and abusive use of a dog shock collar are rare, but can both present in similar ways with respiratory failure, shock, hypernatremia, rhabdomyolysis, brain injury, and multiorgan damage. Although rare, it is essential for early identification and prompt management for acute and chronic complications in these children.

Keywords: cardiogenic shock, dog shock collar, lightning strike, rhabdomyolysis

Procedia PDF Downloads 65
1205 Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion

Authors: Hebert Montegranario, Mauricio Londoño

Abstract:

Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability.

Keywords: Helmholtz equation, meshless methods, seismic imaging, wavefield inversion

Procedia PDF Downloads 519
1204 Assessment of Physical Activity Patterns in Patients with Cardiopulmonary Diseases

Authors: Ledi Neçaj

Abstract:

Objectives: The target of this paper is (1) to explain objectively physical activity model throughout three chronic cardiopulmonary conditions, and (2) to study the connection among physical activity dimensions with disease severity, self-reported physical and emotional functioning, and exercise performance. Material and Methods: This is a cross-sectional study of patients in their domestic environment. Patients with cardiopulmonary diseases were: chronic obstructive pulmonary disease (COPD), (n-63), coronary heart failure (n=60), and patients with implantable cardioverter defibrillator (n=60). Main results measures: Seven ambulatory physical activity dimensions (total steps, percentage time active, percentage time ambulating at low, medium, and hard intensity, maximum cadence for 30 non-stop minutes, and peak performance) have been measured with an accelerometer. Results: Subjects with COPD had the lowest amount of ambulatory physical activity compared with topics with coronary heart failure and cardiac dysrhythmias (all 7 interest dimensions, P<.05); total step counts have been: 5319 as opposed to 7464 as opposed to 9570, respectively. Six-minute walk distance becomes correlated (r=.44-.65, P<.01) with all physical activity dimensions inside the COPD pattern, the most powerful correlations being with total steps and peak performance. In topics with cardiac impairment, maximal oxygen intake had the most effective small to slight correlations with five of the physical activity dimensions (r=.22-.40, P<.05). In contrast, correlations among 6-minute walk test distance and physical activity have been higher (r=.48-.61, P<.01) albeit in a smaller pattern of most effective patients with coronary heart failure. For all three samples, self-reported physical and mental health functioning, age, frame mass index, airflow obstruction, and ejection fraction had both exceptionally small and no significant correlations with physical activity. Conclusions: Findings from this study present a profitable benchmark of physical activity patterns in individuals with cardiopulmonary diseases for comparison with future studies. All seven dimensions of ambulatory physical activity have disfavor between subjects with COPD, heart failure, and cardiac dysrhythmias. Depending on the research or clinical goal, the use of one dimension, such as total steps, may be sufficient. Although physical activity had high correlations with performance on a six-minute walk test relative to other variables, accelerometers-based physical activity monitoring provides unique, important information about real-world behavior in patients with cardiopulmonary not already captured with existing measures.

Keywords: ambulatory physical activity, walking, monitoring, COPD, heart failure, implantable defibrillator, exercise performance

Procedia PDF Downloads 66
1203 Prediction of Super-Response to Cardiac Resynchronisation Therapy

Authors: Vadim A. Kuznetsov, Anna M. Soldatova, Tatyana N. Enina, Elena A. Gorbatenko, Dmitrii V. Krinochkin

Abstract:

The aim of the study was to evaluate potential parameters related with super-response to CRT. Methods: 60 CRT patients (mean age 54.3 ± 9.8 years; 80% men) with congestive heart failure (CHF) II-IV NYHA functional class, left ventricular ejection fraction < 35% were enrolled. At baseline, 1 month, 3 months and each 6 months after implantation clinical, electrocardiographic and echocardiographic parameters, NT-proBNP level were evaluated. According to the best decrease of left ventricular end-systolic volume (LVESV) (mean follow-up period 33.7 ± 15.1 months) patients were classified as super-responders (SR) (n=28; reduction in LVESV ≥ 30%) and non-SR (n=32; reduction in LVESV < 30%). Results: At baseline groups differed in age (58.1 ± 5.8 years in SR vs 50.8 ± 11.4 years in non-SR; p=0.003), gender (female gender 32.1% vs 9.4% respectively; p=0.028), width of QRS complex (157.6 ± 40.6 ms in SR vs 137.6 ± 33.9 ms in non-SR; p=0.044). Percentage of LBBB was equal between groups (75% in SR vs 59.4% in non-SR; p=0.274). All parameters of mechanical dyssynchrony were higher in SR, but only difference in left ventricular pre-ejection period (LVPEP) was statistically significant (153.0 ± 35.9 ms vs. 129.3 ± 28.7 ms p=0.032). NT-proBNP level was lower in SR (1581 ± 1369 pg/ml vs 3024 ± 2431 pg/ml; p=0.006). The survival rates were 100% in SR and 90.6% in non-SR (log-rank test P=0.002). Multiple logistic regression analysis showed that LVPEP (HR 1.024; 95% CI 1.004–1.044; P = 0.017), baseline NT-proBNP level (HR 0.628; 95% CI 0.414–0.953; P=0.029) and age at baseline (HR 1.094; 95% CI 1.009-1.168; P=0.30) were independent predictors for CRT super-response. ROC curve analysis demonstrated sensitivity 71.9% and specificity 82.1% (AUC=0.827; p < 0.001) of this model in prediction of super-response to CRT. Conclusion: Super-response to CRT is associated with better survival in long-term period. Presence of LBBB was not associated with super-response. LVPEP, NT-proBNP level, and age at baseline can be used as independent predictors of CRT super-response.

Keywords: cardiac resynchronisation therapy, superresponse, congestive heart failure, left bundle branch block

Procedia PDF Downloads 371
1202 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, resovist, field strength, relaxivity, signal intensity

Procedia PDF Downloads 333
1201 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning

Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah

Abstract:

In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.

Keywords: 3D imaging, shotcrete, surface model, tunnel stability

Procedia PDF Downloads 270
1200 Examining Influence of The Ultrasonic Power and Frequency on Microbubbles Dynamics Using Real-Time Visualization of Synchrotron X-Ray Imaging: Application to Membrane Fouling Control

Authors: Masoume Ehsani, Ning Zhu, Huu Doan, Ali Lohi, Amira Abdelrasoul

Abstract:

Membrane fouling poses severe challenges in membrane-based wastewater treatment applications. Ultrasound (US) has been considered an effective fouling remediation technique in filtration processes. Bubble cavitation in the liquid medium results from the alternating rarefaction and compression cycles during the US irradiation at sufficiently high acoustic pressure. Cavitation microbubbles generated under US irradiation can cause eddy current and turbulent flow within the medium by either oscillating or discharging energy to the system through microbubble explosion. Turbulent flow regime and shear forces created close to the membrane surface cause disturbing the cake layer and dislodging the foulants, which in turn improve the cleaning efficiency and filtration performance. Therefore, the number, size, velocity, and oscillation pattern of the microbubbles created in the liquid medium play a crucial role in foulant detachment and permeate flux recovery. The goal of the current study is to gain in depth understanding of the influence of the US power intensity and frequency on the microbubble dynamics and its characteristics generated under US irradiation. In comparison with other imaging techniques, the synchrotron in-line Phase Contrast Imaging technique at the Canadian Light Source (CLS) allows in-situ observation and real-time visualization of microbubble dynamics. At CLS biomedical imaging and therapy (BMIT) polychromatic beamline, the effective parameters were optimized to enhance the contrast gas/liquid interface for the accuracy of the qualitative and quantitative analysis of bubble cavitation within the system. With the high flux of photons and the high-speed camera, a typical high projection speed was achieved; and each projection of microbubbles in water was captured in 0.5 ms. ImageJ software was used for post-processing the raw images for the detailed quantitative analyses of microbubbles. The imaging has been performed under the US power intensity levels of 50 W, 60 W, and 100 W, in addition to the US frequency levels of 20 kHz, 28 kHz, and 40 kHz. For the duration of 2 seconds of imaging, the effect of the US power and frequency on the average number, size, and fraction of the area occupied by bubbles were analyzed. Microbubbles’ dynamics in terms of their velocity in water was also investigated. For the US power increase of 50 W to 100 W, the average bubble number and the average bubble diameter were increased from 746 to 880 and from 36.7 µm to 48.4 µm, respectively. In terms of the influence of US frequency, a fewer number of bubbles were created at 20 kHz (average of 176 bubbles rather than 808 bubbles at 40 kHz), while the average bubble size was significantly larger than that of 40 kHz (almost seven times). The majority of bubbles were captured close to the membrane surface in the filtration unit. According to the study observations, membrane cleaning efficiency is expected to be improved at higher US power and lower US frequency due to the higher energy release to the system by increasing the number of bubbles or growing their size during oscillation (optimum condition is expected to be at 20 kHz and 100 W).

Keywords: bubble dynamics, cavitational bubbles, membrane fouling, ultrasonic cleaning

Procedia PDF Downloads 121
1199 Challenges of Management of Subaortic Membrane in a Young Adult Patient: A Case Review and Literature Review

Authors: Talal Asif, Maya Kosinska, Lucas Georger, Krish Sardesai, Muhammad Shah Miran

Abstract:

This article presents a case review and literature review focused on the challenges of managing subaortic membranes (SAM) in young adult patients with mild aortic regurgitation (AR) or aortic stenosis (AS). The study aims to discuss the diagnosis of SAM, imaging studies used for assessment, management strategies in young patients, the risk of valvular damage, and the controversy surrounding prophylactic resection in mild AR. The management of SAM in adults poses challenges due to limited treatment options and potential complications, necessitating further investigation into the progression of AS and AR in asymptomatic SAM patients. The case presentation describes a 40-year-old male with muscular dystrophy who presented with symptoms and was diagnosed with SAM. Various imaging techniques, including CT chest, transthoracic echocardiogram (TTE), and transesophageal echocardiogram (TEE), were used to confirm the presence and severity of SAM. Based on the patient's clinical profile and the absence of surgical indications, medical therapy was initiated, and regular outpatient follow-up was recommended to monitor disease progression. The discussion highlights the challenges in diagnosing SAM, the importance of imaging studies, and the potential complications associated with SAM in young patients. The article also explores the management options for SAM, emphasizing surgical resection as the definitive treatment while acknowledging the limited success rates of alternative approaches. Close monitoring and prompt intervention for complications are crucial in the management of SAM. The concluding statement emphasizes the need for further research to explore alternative treatments for SAM in young patients.

Keywords: subaortic membrane, management, case report, literature review, aortic regurgitation, aortic stenosis, left ventricular outflow obstruction, guidelines, heart failure

Procedia PDF Downloads 72
1198 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 145
1197 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging

Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi

Abstract:

Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.

Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA

Procedia PDF Downloads 259
1196 Calpains; Insights Into the Pathogenesis of Heart Failure

Authors: Mohammadjavad Sotoudeheian

Abstract:

Heart failure (HF) prevalence, as a global cardiovascular problem, is increasing gradually. A variety of molecular mechanisms contribute to HF. Proteins involved in cardiac contractility regulation, such as ion channels and calcium handling proteins, are altered. Additionally, epigenetic modifications and gene expression can lead to altered cardiac function. Moreover, inflammation and oxidative stress contribute to HF. The progression of HF can be attributed to mitochondrial dysfunction that impairs energy production and increases apoptosis. Molecular mechanisms such as these contribute to the development of cardiomyocyte defects and HF and can be therapeutically targeted. The heart's contractile function is controlled by cardiomyocytes. Calpain, and its related molecules, including Bax, VEGF, and AMPK, are among the proteins involved in regulating cardiomyocyte function. Apoptosis is facilitated by Bax. Cardiomyocyte apoptosis is regulated by this protein. Furthermore, cardiomyocyte survival, contractility, wound healing, and proliferation are all regulated by VEGF, which is produced by cardiomyocytes during inflammation and cytokine stress. Cardiomyocyte proliferation and survival are also influenced by AMPK, an enzyme that plays an active role in energy metabolism. They all play key roles in apoptosis, angiogenesis, hypertrophy, and metabolism during myocardial inflammation. The role of calpains has been linked to several molecular pathways. The calpain pathway plays an important role in signal transduction and apoptosis, as well as autophagy, endocytosis, and exocytosis. Cell death and survival are regulated by these calcium-dependent cysteine proteases that cleave proteins. As a result, protein fragments can be used for various cellular functions. By cleaving adhesion and motility proteins, calcium proteins also contribute to cell migration. HF may be brought about by calpain-mediated pathways. Many physiological processes are mediated by the calpain molecular pathways. Signal transduction, cell death, and cell migration are all regulated by these molecular pathways. Calpain is activated by calcium binding to calmodulin. In the presence of calcium, calmodulin activates calpain. Calpains are stimulated by calcium, which increases matrix metalloproteinases (MMPs). In order to develop novel treatments for these diseases, we must understand how this pathway works. A variety of myocardial remodeling processes involve calpains, including remodeling of the extracellular matrix and hypertrophy of cardiomyocytes. Calpains also play a role in maintaining cardiac homeostasis through apoptosis and autophagy. The development of HF may be in part due to calpain-mediated pathways promoting cardiomyocyte death. Numerous studies have suggested the importance of the Ca2+ -dependent protease calpain in cardiac physiology and pathology. Therefore, it is important to consider this pathway to develop and test therapeutic options in humans that targets calpain in HF. Apoptosis, autophagy, endocytosis, exocytosis, signal transduction, and disease progression all involve calpain molecular pathways. Therefore, it is conceivable that calpain inhibitors might have therapeutic potential as they have been investigated in preclinical models of several conditions in which the enzyme has been implicated that might be treated with them. Ca 2+ - dependent proteases and calpains contribute to adverse ventricular remodeling and HF in multiple experimental models. In this manuscript, we will discuss the calpain molecular pathway's important roles in HF development.

Keywords: calpain, heart failure, autophagy, apoptosis, cardiomyocyte

Procedia PDF Downloads 49
1195 Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes

Authors: Ahmad Abdi, M. Golzadeh Gangeraj, Alireza Barari, S. Shirali, S. Amini

Abstract:

Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes.

Keywords: Saffron, aerobic exercises, type 2 diabetes, HFABP, troponin T

Procedia PDF Downloads 243
1194 Leuprolide Induced Scleroderma Renal Crisis: A Case Report

Authors: Nirali Sanghavi, Julia Ash, Amy Wasserman

Abstract:

Introduction: To the best of our knowledge, there is only one case report that found an association between leuprolide and scleroderma renal crisis (SRC). Leuprolide has been noted to cause acute renal failure in some patients. Given the close timing of the leuprolide injection and the worsening renal function in our patient, leuprolide likely caused exacerbation of lupus nephritis and SRC. Interestingly, our patient on long-term hydroxychloroquine (HCQ) with normal baseline cardiac function was found to have HCQ cardiomyopathy highlighting the need for close monitoring of HCQ toxicity. We know that some of the risk factors that are involved in HCQ induced cardiomyopathy are older age, females, increased dose and >10 years of HCQ use, and pre-existing cardiac and renal insufficiency. Case presentation: A 34-year-old African American woman with a history of overlap of systemic lupus erythematosus (SLE) and scleroderma features and class III lupus nephritis presented with severe headaches, elevated blood pressure (180/120 mmHg) and worsening creatinine levels (2.07 mg/dL). The headaches started 1 month ago after she started leuprolide injections for fibroids. She was being treated with mycophenolate mofetil 1 gm twice a day, belimumab weekly, HCQ 200mg, and prednisone 5 mg daily. She has been on HCQ since her teenage years. The examination was unremarkable except for proximal interphalangeal joint contractures in the right hand and sclerodactyly of bilateral hands, unchanged from baseline. Laboratory findings include urinalysis, which showed 3+ protein, 1+ blood, 6 red blood cells, and 14 white blood cells ruling out thrombotic microangiopathy. C3 was 32 mg/dL, C4 <5 mg/dL, and +dsDNA increased >1000. She was started on captopril and discharged once creatinine and blood pressure was controlled. She was readmitted with hypertension, hyperkalemia, worsening creatinine, nephrotic range proteinuria, complaints of chest pressure, and shortness of breath with pleuritic chest pain. Physical examination and lab findings were unchanged. She was treated with pulse dose methyl prednisone followed by taper and multiple anti-hypertensive agents, including captopril, for presumed lupus nephritis flare versus SRC. Renal biopsy was consistent with SRC and class IV lupus nephritis and was started on cyclophosphamide. While cardiac biopsy showed borderline myocarditis without necrosis and cytoplasmic vacuolization consistent with HCQ cardiomyopathy, hence HCQ was discontinued. Summary: It highlights a rare association of leuprolide causing exacerbation of lupus nephritis or SRC. Although rare, the current case reinforces the importance of close monitoring for HCQ toxicity in patients with renal insufficiency.

Keywords: leuprolide, lupus nephritis, scleroderma, SLE

Procedia PDF Downloads 65
1193 Assessment of Frying Material by Deep-Fat Frying Method

Authors: Brinda Sharma, Saakshi S. Sarpotdar

Abstract:

Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.

Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying

Procedia PDF Downloads 405