Search results for: artificial communication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6154

Search results for: artificial communication

2944 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 312
2943 Synthesis, Structural and Vibrational Studies of a New Lacunar Apatite: LIPB2CA2(PO4)3

Authors: A. Chari, A. El Bouari, B. Orayech, A. Faik, J. M. Igartua

Abstract:

The phosphate is a natural resource of great importance in Morocco. In order to exploit this wealth, synthesis and studies of new a material based phosphate, were carried out. The apatite structure present o lot of characteristics, One of the main characteristics is to allow large and various substitutions for both cations and anions. Beside their biological importance in hard tissue (bone and teeth), apatites have been extensively studied for their potential use as fluorescent lamp phosphors or laser host materials.The apatite have interesting possible application fields such as in medicine as materials of bone filling, coating of dental implants, agro chemicals as artificial fertilizers. The LiPb2Ca2(PO4)3 was synthesized by the solid-state method, its crystal structure was investigated by Rietveld analysis using XRPD data. This material crystallizes with a structure of lacunar apatite anion deficit. The LiPb2Ca2(PO4)3 is hexagonal apatite at room temperature, adopting the space group P63/m (ITA No. 176), Rietveld refinements showed that the site 4f is shared by three cations Ca, Pb and Li. While the 6h is occupied by the Pb and Li cations. The structure can be described as built up from the PO4 tetrahedra and the sixfold coordination cavities, which delimit hexagonal tunnels along the c-axis direction. These tunnels are linked by the cations occupying the 4 f sites. Raman and Infrared spectroscopy analyses were carried out. The observed frequencies were assigned and discussed on the basis of unit-cell group analysis and by comparison to other apatite-type materials.

Keywords: apatite, Lacunar, crystal structure, Rietveldmethod, LiPb2Ca2(PO4)3, Phase transition

Procedia PDF Downloads 404
2942 Review of Theories and Applications of Genetic Programing in Sediment Yield Modeling

Authors: Adesoji Tunbosun Jaiyeola, Josiah Adeyemo

Abstract:

Sediment yield can be considered to be the total sediment load that leaves a drainage basin. The knowledge of the quantity of sediments present in a river at a particular time can lead to better flood capacity in reservoirs and consequently help to control over-bane flooding. Furthermore, as sediment accumulates in the reservoir, it gradually loses its ability to store water for the purposes for which it was built. The development of hydrological models to forecast the quantity of sediment present in a reservoir helps planners and managers of water resources systems, to understand the system better in terms of its problems and alternative ways to address them. The application of artificial intelligence models and technique to such real-life situations have proven to be an effective approach of solving complex problems. This paper makes an extensive review of literature relevant to the theories and applications of evolutionary algorithms, and most especially genetic programming. The successful applications of genetic programming as a soft computing technique were reviewed in sediment modelling and other branches of knowledge. Some fundamental issues such as benchmark, generalization ability, bloat and over-fitting and other open issues relating to the working principles of GP, which needs to be addressed by the GP community were also highlighted. This review aim to give GP theoreticians, researchers and the general community of GP enough research direction, valuable guide and also keep all stakeholders abreast of the issues which need attention during the next decade for the advancement of GP.

Keywords: benchmark, bloat, generalization, genetic programming, over-fitting, sediment yield

Procedia PDF Downloads 448
2941 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 489
2940 Expanding the Atelier: Design Lead Academic Project Using Immersive User-Generated Mobile Images and Augmented Reality

Authors: David Sinfield, Thomas Cochrane, Marcos Steagall

Abstract:

While there is much hype around the potential and development of mobile virtual reality (VR), the two key critical success factors are the ease of user experience and the development of a simple user-generated content ecosystem. Educational technology history is littered with the debris of over-hyped revolutionary new technologies that failed to gain mainstream adoption or were quickly superseded. Examples include 3D television, interactive CDROMs, Second Life, and Google Glasses. However, we argue that this is the result of curriculum design that substitutes new technologies into pre-existing pedagogical strategies that are focused upon teacher-delivered content rather than exploring new pedagogical strategies that enable student-determined learning or heutagogy. Visual Communication design based learning such as Graphic Design, Illustration, Photography and Design process is heavily based on the traditional forms of the classroom environment whereby student interaction takes place both at peer level and indeed teacher based feedback. In doing so, this makes for a healthy creative learning environment, but does raise other issue in terms of student to teacher learning ratios and reduced contact time. Such issues arise when students are away from the classroom and cannot interact with their peers and teachers and thus we see a decline in creative work from the student. Using AR and VR as a means of stimulating the students and to think beyond the limitation of the studio based classroom this paper will discuss the outcomes of a student project considering the virtual classroom and the techniques involved. The Atelier learning environment is especially suited to the Visual Communication model as it deals with the creative processing of ideas that needs to be shared in a collaborative manner. This has proven to have been a successful model over the years, in the traditional form of design education, but has more recently seen a shift in thinking as we move into a more digital model of learning and indeed away from the classical classroom structure. This study focuses on the outcomes of a student design project that employed Augmented Reality and Virtual Reality technologies in order to expand the dimensions of the classroom beyond its physical limits. Augmented Reality when integrated into the learning experience can improve the learning motivation and engagement of students. This paper will outline some of the processes used and the findings from the semester-long project that took place.

Keywords: augmented reality, blogging, design in community, enhanced learning and teaching, graphic design, new technologies, virtual reality, visual communications

Procedia PDF Downloads 240
2939 Testing of Electronic Control Unit Communication Interface

Authors: Petr Šimek, Kamil Kostruk

Abstract:

This paper deals with the problem of testing the Electronic Control Unit (ECU) for the specified function validation. Modern ECUs have many functions which need to be tested. This process requires tracking between the test and the specification. The technique discussed in this paper explores the system for automating this process. The paper focuses in its chapter IV on the introduction to the problem in general, then it describes the proposed test system concept and its principle. It looks at how the process of the ECU interface specification file for automated interface testing and test tracking works. In the end, the future possible development of the project is discussed.

Keywords: electronic control unit testing, embedded system, test generate, test automation, process automation, CAN bus, ethernet

Procedia PDF Downloads 114
2938 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 154
2937 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 122
2936 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 413
2935 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 228
2934 A High Quality Factor Filter Based on Quasi- Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue-Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor, photonic

Procedia PDF Downloads 573
2933 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery

Authors: Khadidja Belbachir, Hafida Belbachir

Abstract:

subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.

Keywords: association rules, distributed data mining, partition, parallel algorithms

Procedia PDF Downloads 421
2932 Identification of Autism Spectrum Disorders in Day-Care Centres

Authors: Kenneth Larsen, Astrid Aasland, Synnve Schjølberg, Trond Diseth

Abstract:

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders emerging in early development characterized by impairment in social communication skills and a restricted, repetitive and stereotyped patterns of behavior and interests. Early identification and interventions potentially improve development and quality of life of children with ASD. Symptoms of ASD are apparent through the second year of life, yet diagnostic age are still around 4 years of age. This study explored whether symptoms associated with ASD are possible to identify in typical Norwegian day-care centers in the second year of life. Results of this study clearly indicates that most described symptoms also are identifiable by day-care staff, and that a short observation list of 5 symptoms clearly identify children with ASD from a sample of normal developing peers.

Keywords: autism, early identification, day-care, screening

Procedia PDF Downloads 395
2931 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 135
2930 Compositional Dependence of Hydroxylated Indium-Oxide on the Reaction Rate of CO2/H2 Reduction

Authors: Joel Y. Y. Loh, Geoffrey A. Ozin, Charles A. Mims, Nazir P. Kherani

Abstract:

A major goal in the emerging field of solar fuels is to realize an ‘artificial leaf’ – a material that converts light energy in the form of solar photons into chemical energy – using CO2 as a feedstock to generate useful chemical species. Enabling this technology will allow the greenhouse gas, CO2, emitted from energy and manufacturing production exhaust streams to be converted into valuable solar fuels or chemical products. Indium Oxide (In2O3) with surface hydroxyl (OH) groups have been shown to reduce CO2 in the presence of H2 to CO with a reaction rate of 15 μmol gcat−1 h−1. The likely mechanism is via a Frustrated Lewis Pair sites heterolytically splitting H2 to be absorbed and form protonic and hydric sites that can dissociate CO2. In this study, we investigate the dependence of oxygen composition of In2O3 on the CO2 reduction rate. In2O3-x films on quartz fiber paper were DC sputtered with an Indium target and varying O2/Ar plasma mixture. OH surface groups were then introduced by immersing the In2O3-x samples in KOH. We show that hydroxylated In2O3-x reduces more CO2 than non-hydroxylated groups and that a hydroxylated and higher O2/Ar ratio sputtered In2O3-x has a higher reaction rate of 45 μmol gcat-1 h-1. We show by electrical resistivity-temperature curves that H2 is adsorbed onto the surface of In2O3 whereas CO2 itself does not affect the indium oxide surface. We also present activation and ionization energy levels of the hydroxylated In2O3-x under vacuum, CO2 and H2 atmosphere conditions.

Keywords: solar fuels, photocatalysis, indium oxide nanoparticles, carbon dioxide

Procedia PDF Downloads 240
2929 Potentially Toxic Cyanobacteria and Quantification of Microcystins/Nodularins and Cylindspermopsine in Four Dams of Guanajuato, Mexico

Authors: Laura Valdés-Santiago, José Luis Castro-Guillén, Jorge Noé García-Chávez, Rosalba Alonso-Rodríguez, Rafael Vargas-Bernal

Abstract:

The quality and availability of the water contained in dams (artificial bodies of water) are at risk due to the presence of uncontrolled growths of cyanobacteria capable of producing cyanotoxins that affect the ecosystem and harm the health of humans and animals. The physicochemical properties were measured, and the degree of eutrophy of four dams from Guanajuato was determined. They presented a pH of 6.1 to 8.4, conductivity of 121 to 415 μS/cm², chlorophyll of 0.43-42.43 μg/L, NO₃- 0-1.2 mg/L and PO₄3- 0.11 to 0.84 mg/L; considering these parameters, the prey most prone to the development of cyanobacterial blooms were El Palote dam, La Purísima dam, and Allende dam, but not El Conejo dam. The potentially toxic cyanobacteria identified were Planktothrix agardhii, Oscillatoria sp., Raphidiopsis sp., and Microcystis sp., Microcystin-LR, Nodularin, and Cylindrospermopsin were quantified, presenting values between 0.08-0.42 and 0.02-2.05 ppb, respectively, the water bodies with the highest concentration were El Palote dam and La Purísima dam. Microcystin-LR and/or Nodularin levels are within the guideline values for human consumption in drinking water established by the World Health Organization for Microcystin-LR and for Cylindrospermopsin by the Oregon Health Authority (OHA) in all dams. This work is relevant due to the use of these bodies of water for agriculture and human consumption in the state, and the presence of toxin-producing cyanobacteria can represent an environmental, ecotoxicological, and health problem, so it is recommended to establish a program of frequent monitoring of cyanobacteria and cyanotoxins in the state's dams.

Keywords: Planktrothrix agardhii, Raphidiopsis sp., Microcystis sp., Cyanobacterial blooms, Cyanotoxins

Procedia PDF Downloads 83
2928 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 53
2927 The Project Management for Quality Services in Special Education Schools

Authors: Aysegul Salikutluk, Zehra Altinay, Gokmen Dagli, Fahriye Altinay

Abstract:

The aim of the study is to reveal the performance of special education schools as regards the service quality and management within the school culture. The project management and school climate are the fundamental elements for the quality in organisations. Having strategic plans, activities and funded projects improve service quality and satisfaction for the families who have children with disabilities. The research has qualitative nature, self-reports were used to examine the perceptions of teachers upon project management and school climate for service quality. The results show that special education schools' teachers are aware of essence of school climate and flow of communication for service quality and project management.

Keywords: disability, education, service quality, project management

Procedia PDF Downloads 272
2926 Language Maintenance and Literacy of Madurese in Probolinggo City

Authors: Maria Ulfa, Nur Awaliyah Putri

Abstract:

Madurese is known as Malayo-Sumbawan Austronesian language which is used by Madurese people in Madura Island, Indonesia. However, there was a massive migration of Madurese people due to Dutch colonization. The Madurese people were brought by force for cultivation system to the eastern salient north coast or called as Tapal Kuda that spread in region covers the regencies of Probolinggo, Lumajang, Jember, Situbondo, Bondowoso, and Banyuwangi, the eastern part of the Pasuruan Regency, as well as the city of Probolinggo. The city of Probolinggo has unique characteristic regarding the ethnic and language variation. Several ethnics can be found in this city, such as Madurese, Javanese, Tengger, Arabic, Mandhalungan, Osing, and Chinese. Hence, the hybrid culture happens in Probolinggo, they called the culture as Pendhalungan which is the combination of culture among Madurese and Javanese. Among those ethnics, Madurese is the strongest ethnic that still maintains their identity, such as their ethnic language. The massive growth of Madurese in Probolinggo city, East Java is interesting to be analyzed. The object of this study is to discover language ideology and literacy of Madurese to maintain their ethnic language in Probolinggo city, East Java. The researchers used the theory of language maintenance practice based on three types of practices social language, social literacy, and peripheral ritualized practices. The approach of this study was qualitative research with ethnography method. In order to collect the data, researchers used observation and interview techniques. The amount of informants were 20 families which consist of mother, father and children in 5 sub-districts in Probolinggo city and they were interviewed regarding language ideology and literacy of Madurese. In supporting the data, researchers employed the Madurese speakers outside family scope like in school, office, and market. The result of the study revealed that Madurese has been preserved heritably to young generations by ethnics of Madura in Probolinggo city. Primarily the language is being taught in the earlier age of their children as L1 and used as ethnic identity. The parents teach them with simple sentences that grammatically correct. This language literacy is applied to maintain ethnic language as their ethnicity marker since they inhabit in Javanese ethnic area. In fact, it is not the only ideology of Madurese ethnic but also the influence of economic situation like in trading communication. The usage of Madurese in the trading scope is very beneficial since people can bargain the goods cheaper and easier because most of the traders are from Madurese ethnic. In this situation, linguistic phenomena such as code mixing and code switching between Madurese and Javanese are emerged as the trading communication. From the result, it can be concluded that solidarity exists among Madurese people in many scopes.

Keywords: language literacy, language maintenance, Madurese, Probolinggo City

Procedia PDF Downloads 235
2925 The Debureaucratization Strategy for the Portuguese Health Service through Effective Communication

Authors: Fernando Araujo, Sandra Cardoso, Fátima Fonseca, Sandra Cavaca

Abstract:

A debureaucratization strategy for the Portuguese Health Service was assumed by the Executive Board of the SNS, in deep articulation with the Shared Services of the Ministry of Health. Two of the main dimensions were focused on sick leaves (SL), that transform primary health care (PHC) in administrative institutions, limiting access to patients. The self-declaration of illness (SDI) project, through the National Health Service Contact Centre (SNS24), began on May 1, 2023, and has already resulted in the issuance of more than 300,000 SDI without the need to allocate resources from the National Health Service (NHS). This political decision allows each citizen, in a maximum 2 times/year, and 3 days each time, if ill, through their own responsibility, report their health condition in a dematerialized way, and by this way justified the absence to work, although by Portuguese law in these first three days, there is no payment of salary. Using a digital approach, it is now feasible without the need to go to the PHC and occupy the time of the PHC only to obtain an SL. Through this measure, bureaucracy has been reduced, and the system has been focused on users, improving the lives of citizens and reducing the administrative burden on PHC, which now has more consultation times for users who need it. The second initiative, which began on March 1, 2024, allows the SL to be issued in emergency departments (ED) of public hospitals and in the health institutions of the social and private sectors. This project is intended to allow the user who has suffered a situation of acute urgent illness and who has been observed in an ED of a public hospital or in a private or social entity no longer need to go to PHC only to apply for the respective SL. Since March 1, 54,453 SLs have been issued, 242 in private or social sector institutions and 6,918 in public hospitals, of which 134 were in ED and 47,292 in PHC. This approach has proven to be technically robust, allows immediate resolution of problems and differentiates the performance of doctors. However, it is important to continue to qualify the proper functioning of the ED, preventing non-urgent users from going there only to obtain SL. Thus, in order to make better use of existing resources, it was operationalizing this extension of its issuance in a balanced way, allowing SL to be issued in the ED of hospitals only to critically ill patients or patients referred by INEM, SNS24, or PHC. In both cases, an intense public campaign was implemented to explain the way it works and the benefits for patients. In satisfaction surveys, more than 95% of patients and doctors were satisfied with the solutions, asking for extensions to other areas. The administrative simplification agenda of the NHS continues its effective development. For the success of this debureaucratization agenda, the key factors are effective communication and the ability to reach patients and health professionals in order to increase health literacy and the correct use of NHS.

Keywords: debureaucratization strategy, self-declaration of illness, sick leaves, SNS24

Procedia PDF Downloads 73
2924 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 380
2923 An Incremental Refinement Approach to a Development of Dynamic Host Configuration Protocol (DHCP) Using Event-B

Authors: Rajaa Filali, Mohamed Bouhdadi

Abstract:

This paper presents an incremental development of the Dynamic Host Configuration Protocol (DHCP) in Event-B. DHCP is widely used communication protocol, which provides a standard mechanism to obtain configuration parameters. The specification is performed in a stepwise manner and verified through a series of refinements. The Event-B formal method uses the Rodin platform to modeling and verifying some properties of the protocol such as safety, liveness and deadlock freedom. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps.

Keywords: DHCP protocol, Event-B, refinement, proof obligation, Rodin

Procedia PDF Downloads 229
2922 Islamic Extremist Groups' Usage of Populism in Social Media to Radicalize Muslim Migrants in Europe

Authors: Muhammad Irfan

Abstract:

The rise of radicalization within Islam has spawned a new era of global terror. The battlefield Successes of ISIS and the Taliban are fuelled by an ideological war waged, largely and successfully, in the media arena. This research will examine how Islamic extremist groups are using media modalities and populist narratives to influence migrant Muslim populations in Europe towards extremism. In 2014, ISIS shocked the world in exporting horrifically graphic forms of violence on social media. Their Muslim support base was largely disgusted and reviled. In response, they reconfigured their narrative by introducing populist 'hooks', astutely portraying the Muslim populous as oppressed and exploited by unjust, corrupt autocratic regimes and Western power structures. Within this crucible of real and perceived oppression, hundreds of thousands of the most desperate, vulnerable and abused migrants left their homelands, risking their lives in the hope of finding peace, justice, and prosperity in Europe. Instead, many encountered social stigmatization, detention and/or discrimination for being illegal migrants, for lacking resources and for simply being Muslim. This research will examine how Islamic extremist groups are exploiting the disenfranchisement of these migrant populations and using populist messaging on social media to influence them towards violent extremism. ISIS, in particular, formulates specific encoded messages for newly-arriving Muslims in Europe, preying upon their vulnerability. Violence is posited, as a populist response, to the tyranny of European oppression. This research will analyze the factors and indicators which propel Muslim migrants along the spectrum from resilience to violence extremism. Expected outcomes are identification of factors which influence vulnerability towards violent extremism; an early-warning detection framework; predictive analysis models; and de-radicalization frameworks. This research will provide valuable tools (practical and policy level) for European governments, security stakeholders, communities, policy-makers, and educators; it is anticipated to contribute to a de-escalation of Islamic extremism globally.

Keywords: populism, radicalization, de-radicalization, social media, ISIS, Taliban, shariah, jihad, Islam, Europe, political communication, terrorism, migrants, refugees, extremism, global terror, predictive analysis, early warning detection, models, strategic communication, populist narratives, Islamic extremism

Procedia PDF Downloads 119
2921 An Integrated Framework for Seismic Risk Mitigation Decision Making

Authors: Mojtaba Sadeghi, Farshid Baniassadi, Hamed Kashani

Abstract:

One of the challenging issues faced by seismic retrofitting consultants and employers is quick decision-making on the demolition or retrofitting of a structure at the current time or in the future. For this reason, the existing models proposed by researchers have only covered one of the aspects of cost, execution method, and structural vulnerability. Given the effect of each factor on the final decision, it is crucial to devise a new comprehensive model capable of simultaneously covering all the factors. This study attempted to provide an integrated framework that can be utilized to select the most appropriate earthquake risk mitigation solution for buildings. This framework can overcome the limitations of current models by taking into account several factors such as cost, execution method, risk-taking and structural failure. In the newly proposed model, the database and essential information about retrofitting projects are developed based on the historical data on a retrofit project. In the next phase, an analysis is conducted in order to assess the vulnerability of the building under study. Then, artificial neural networks technique is employed to calculate the cost of retrofitting. While calculating the current price of the structure, an economic analysis is conducted to compare demolition versus retrofitting costs. At the next stage, the optimal method is identified. Finally, the implementation of the framework was demonstrated by collecting data concerning 155 previous projects.

Keywords: decision making, demolition, construction management, seismic retrofit

Procedia PDF Downloads 240
2920 Voices of Youth: Contributing to Healthy Teens

Authors: Christa Beyers

Abstract:

Investing in the health of youth is essential for the well-being of society. If youth do not live a healthy life, the future of the global workforce and overall development of adolescents looks bleak given the challenges posed in this developmental stage. The idea of sexuality education at home and in our schools is a controversial and contentious subject, as many parents and teachers do not hold the same beliefs as to what content should be taught. Despite high incidence of HIV and STD infections, early school dropout and teen pregnancies, sexuality education has still not been given the recognition or importance it deserves. By giving youth a voice can lead to both behavioural and policy changes. This article is based on a literature review of sex and sexuality education from a social studies approach. This article argues that adults tend to teach from their own perspective, which does not meet the needs of youth, thereby ignoring the social aspects of sexual behaviour.

Keywords: sexuality education, adolescents, communication, cycle of socialization

Procedia PDF Downloads 198
2919 The Chemistry in the Video Game No Man’s Sky

Authors: Diogo Santos, Nelson Zagalo, Carla Morais

Abstract:

No Man’s Sky (NMS) is a sci-fi video game about survival and exploration where players fly spaceships, search for elements, and use them to survive. NMS isn’t a serious game, and not all the science in the game is presented with scientific evidence. To find how players felt about the scientific content in the game and how they perceive the chemistry in it, a survey was sent to NMS’s players, from which were collected answers from 124 respondents from 23 countries. Chemophobia is still a phenomenon when chemistry or chemicals are a subject of discussion, but 68,9% of our respondents showed a positive attitude towards the presence of chemistry in NMS, with 57% stating that playing the video game motivated them to know more about science. 8% of the players stated that NMS often prompted conversations about the science in the video game between them and teachers, parents, or friends. These results give us ideas on how an entertainment game can potentially help scientists, educators, and science communicators reach a growing, evolving, vibrant, diverse, and demanding audience.

Keywords: digital games, science communication, chemistry, informal learning, No Man’s Sky

Procedia PDF Downloads 111
2918 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 228
2917 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: fault tolerance, improved RSA, key agreement, proxy signature

Procedia PDF Downloads 428
2916 Hidden Markov Model for Financial Limit Order Book and Its Application to Algorithmic Trading Strategy

Authors: Sriram Kashyap Prasad, Ionut Florescu

Abstract:

This study models the intraday asset prices as driven by Markov process. This work identifies the latent states of the Hidden Markov model, using limit order book data (trades and quotes) to continuously estimate the states throughout the day. This work builds a trading strategy using estimated states to generate signals. The strategy utilizes current state to recalibrate buy/ sell levels and the transition between states to trigger stop-loss when adverse price movements occur. The proposed trading strategy is tested on the Stevens High Frequency Trading (SHIFT) platform. SHIFT is a highly realistic market simulator with functionalities for creating an artificial market simulation by deploying agents, trading strategies, distributing initial wealth, etc. In the implementation several assets on the NASDAQ exchange are used for testing. In comparison to a strategy with static buy/ sell levels, this study shows that the number of limit orders that get matched and executed can be increased. Executing limit orders earns rebates on NASDAQ. The system can capture jumps in the limit order book prices, provide dynamic buy/sell levels and trigger stop loss signals to improve the PnL (Profit and Loss) performance of the strategy.

Keywords: algorithmic trading, Hidden Markov model, high frequency trading, limit order book learning

Procedia PDF Downloads 151
2915 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 95