Search results for: iron production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7990

Search results for: iron production

7720 An Analysis of Energy Use and Input Level for Tomato Production in Turkey

Authors: Hasan Vural

Abstract:

The purpose of this study was to determine energy equivalents of inputs and output in tomato production in Bursa province. The data in this study were collected from tomato farms in Bursa province, Karacabey and Mustafakemalpasa district. Questionnaires were administered through face-to-face interview in 2011-2012. The results of the study show that diesel have the highest rate of energy equivalency of all the inputs used in tomato production at 60,07%. The energy equivalent rate of electricity is 4,26% and the energy equivalent rate of water is 0,87%. The energy equivalent rates for human power, machinery, chemicals and water for irrigation were determined to be low in tomato production. According to the output/input ratio calculated, the energy ratio is 1,50 in tomato production in the research area. This ratio implies that the inputs used in tomato production have not been used effectively. Ineffective use of these resources also causes environmental problems.

Keywords: Tomato production, energy ratio, energy input, Turkey

Procedia PDF Downloads 205
7719 Effects of Varying Fermentation Periods on the Chemical Composition of African Yam Bean (Sphenostylis stenocarpa) and Acha (Digitaria exilis) Flour Blends and Sensory Properties of Their Products

Authors: P. N. Okeke, J. N. Chikwendu

Abstract:

The study evaluated the effects of varying fermentation periods on the nutrients and anti-nutrients composition of African yam bean (Sphenostylis stenocarpa) and acha (Digitaria exilis) flour blends and sensory properties of their products. The African yam bean seeds and acha grains were fermented for 24 hrs, 48 and 72 hrs, dried (sun drying) and milled into fine flour. The fermented flours were used in a ratio of 70:30 (Protein basis) to formulate composite flour for meat pie and biscuits production. Both the fermented and unfermented flours and products were analyzed for chemical composition using the standard method. The data were statistically analyzed using SPSS version 15 to determine the mean and standard deviation. The 24, 48, and 72 hrs fermentation periods increased protein (22.81, 26.15 and 24.00% respectively). The carbohydrate, ash and moisture contents of the flours were also increased as a result of fermentation (68.01-76.83, 2.26-4.88, and 8.36-13.00% respectively). The 48 hrs fermented flour blends had the highest increase in ash relative to the control (4.88%). Fermentation increased zinc, iron, magnesium and phosphorus content of the flours. Treatment drastically reduced the anti-nutrient (oxalate, saponin, tannin, phytate, and hemagglutinin) levels of the flours. Both meat pie and biscuits had increased protein relative to the control (27.36-34.28% and 23.66-25.09%). However, the protein content of the meat pie increased more than that of the biscuits. Zinc, Iron, Magnesium and phosphorus levels increased in both meat pie and biscuits. Organoleptic attributes of the products (meat pie and biscuits) were slightly lower than the control except those of the 72 hrs fermented flours.

Keywords: fermentation, African yam bean, acha, biscuits, meat-pie

Procedia PDF Downloads 246
7718 Ceramic Glazes from Recycled Bottle Glass

Authors: Suraphan Rattanavadi

Abstract:

This research was a study based on an application of used glass in producing glaze on ceramics. The aim was to identify the factors in the production process that affected ceramic product property when used glass was applied as the ceramic glaze. The study factors included appropriate materials, appropriate temperature used in fusion process, percentage of water absorption, fluidity, crazing and appropriate proportion in glaze production by Biaxial Blend Technique and use of oxide in glaze coloring both on test and real product. The test of fluidity revealed that the glazes number 15 and 16 had appropriate fluidity ratio for use as basic glaze. When each glaze was mixed with oxide at different proportion, it was discovered that the glaze number 16 showed glossy brown with beautiful but not clear crazing, due to its dark shade. This was from the mixture of kaolin and pieces of glass at the ratio of 1:3 (kaolin : pieces of glass), affecting at 10% with iron oxide. When 0.5% of copper carbonate and 0.1% of tin oxide were added, the result was the glaze with glossy, Muzo emerald (green- blue) color with beautiful and clear crazing. Lastly, 0.4% of cobalt carbonate was added, ending in the glaze with glossy, bright blue with beautiful but not clear, due to its dark shade.

Keywords: glaze, recycled, bottle glass, ceramic

Procedia PDF Downloads 286
7717 Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

Authors: Salem Ali Jebreil

Abstract:

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

Keywords: adsorption, composite, dye, polyaniline, tartrazine

Procedia PDF Downloads 256
7716 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target

Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang

Abstract:

Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.

Keywords: production, performance, dashboard, data analytics

Procedia PDF Downloads 36
7715 Transport of Reactive Carbo-Iron Composite Particles for in situ Groundwater Remediation Investigated at Laboratory and Field Scale

Authors: Sascha E. Oswald, Jan Busch

Abstract:

The in-situ dechlorination of contamination by chlorinated solvents in groundwater via zero-valent iron (nZVI) is potentially an efficient and prompt remediation method. A key requirement is that nZVI has to be introduced in the subsurface in a way that substantial quantities of the contaminants are actually brought into direct contact with the nZVI in the aquifer. Thus it could be a more flexible and precise alternative to permeable reactive barrier techniques using granular iron. However, nZVI are often limited by fast agglomeration and sedimentation in colloidal suspensions, even more so in the aquifer sediments, which is a handicap for the application to treat source zones or contaminant plumes. Colloid-supported nZVI show promising characteristics to overcome these limitations and Carbo-Iron Colloids is a newly developed composite material aiming for that. The nZVI is built onto finely ground activated carbon of about a micrometer diameter acting as a carrier for it. The Carbo-Iron Colloids are often suspended with a polyanionic stabilizer, and carboxymethyl cellulose is one with good properties for that. We have investigated the transport behavior of Carbo-Iron Colloids (CIC) on different scales and for different conditions to assess its mobility in aquifer sediments as a key property for making its application feasible. The transport properties were tested in one-dimensional laboratory columns, a two-dimensional model aquifer and also an injection experiment in the field. Those experiments were accompanied by non-invasive tomographic investigations of the transport and filtration processes of CIC suspensions. The laboratory experiments showed that a larger part of the CIC can travel at least scales of meters for favorable but realistic conditions. Partly this is even similar to a dissolved tracer. For less favorable conditions this can be much smaller and in all cases a particular fraction of the CIC injected is retained mainly shortly after entering the porous medium. As field experiment a horizontal flow field was established, between two wells with a distance of 5 meters, in a confined, shallow aquifer at a contaminated site in North German lowlands. First a tracer test was performed and a basic model was set up to define the design of the CIC injection experiment. Then CIC suspension was introduced into the aquifer at the injection well while the second well was pumped and samples taken there to observe the breakthrough of CIC. This was based on direct visual inspection and total particle and iron concentrations of water samples analyzed in the laboratory later. It could be concluded that at least 12% of the CIC amount injected reached the extraction well in due course, some of it traveling distances larger than 10 meters in the non-uniform dipole flow field. This demonstrated that these CIC particles have a substantial mobility for reaching larger volumes of a contaminated aquifer and for interacting there by their reactivity with dissolved contaminants in the pore space. Therefore they seem suited well for groundwater remediation by in-situ formation of reactive barriers for chlorinated solvent plumes or even source removal.

Keywords: carbo-iron colloids, chlorinated solvents, in-situ remediation, particle transport, plume treatment

Procedia PDF Downloads 226
7714 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms

Keywords: aggregate production planning, trial and error, linear programming, furniture industry

Procedia PDF Downloads 523
7713 Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-Parental Recombinant Inbred Lines in Pearl Millet

Authors: Tripti Singhal, C. Tara Satyavathi, S. P. Singh, Aruna Kumar, Mukesh Sankar S., C. Bhardwaj, Mallik M., Jayant Bhat, N. Anuradha, Nirupma Singh

Abstract:

Pearl millet is a climate-resilient nutritious crop. We report iron and zinc content QTLs from 3 divergent locations. The content of grain Fe in the RILs ranged between 36 and 114 mg/kg, and that of Zn from 20 to 106 mg/kg across the three years at over 3 locations (Delhi, Dharwad, and Jodhpur). We used SSRs to generate a linkage map using 210 F₆ RIL derived from the (PPMI 683 × PPMI 627) cross. The linkage map of 151 loci was 3403.6 cM in length. QTL analysis revealed a total of 22 QTLs for both traits at all locations. Inside QTLs, candidate genes were identified using bioinformatics approaches.

Keywords: yield, pearl millet, QTL mapping, multi-environment, RILs

Procedia PDF Downloads 109
7712 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 361
7711 Experimental Study of Application of Steel Slag as Aggregate in Road Construction

Authors: Meftah M. Elsaraiti, Samir Milad Elsariti

Abstract:

Steel slag is a by-product of the steel production and utilizing it potentially as new or substitute materials in road construction is advantageous regarding cost reduction and flattening improvement or properties pavement. Ease of use, low cost, and resource availability are some of few advantages of reuse and recycling of steel slag. This study assesses the use of Steel Slag Aggregates (SSA) as an alternative to natural road building aggregates. This paper discusses the basic characteristics of steel slag based on extensive laboratory tests, and to determine the possibilities of using steel slag in road construction. Samples were taken from the furnaces directly at different times and dates. Moreover, random samples were also taken from the slag field from various areas at different far distances from each other. A necessary analysis was performed through the use of (XRF). Three different percentages of SSA (0, 50 and 100%) were added as an alternative to natural aggregate in hot mix asphalt (HMA) production. The proposed design of the mix was made according to the Marshall mix design. The results of the experiments revealed that the percentages of iron oxide ranged from (9 to 26%) and that the addition of SSA has a significant improvement on HMA properties. It was observed that the Marshall stability obtained in the mix of 100% slag ranged from 600 to 800 N as a minimum, and the flow of Marshall obtained from 2.4 to 3.23 mm and the specification requires from 2 to 4 mm. The results may be showed possibilities to use steel slag as new or substitute materials in road construction in Libya.

Keywords: by-product material, properties, road construction, steel slag

Procedia PDF Downloads 163
7710 Electro-Fenton Degradation of Erythrosine B Using Carbon Felt as a Cathode: Doehlert Design as an Optimization Technique

Authors: Sourour Chaabane, Davide Clematis, Marco Panizza

Abstract:

This study investigates the oxidation of Erythrosine B (EB) food dye by a homogeneous electro-Fenton process using iron (II) sulfate heptahydrate as a catalyst, carbon felt as cathode, and Ti/RuO2. The treated synthetic wastewater contains 100 mg L⁻¹ of EB and has a pH = 3. The effects of three independent variables have been considered for process optimization, such as applied current intensity (0.1 – 0.5 A), iron concentration (1 – 10 mM), and stirring rate (100 – 1000 rpm). Their interactions were investigated considering response surface methodology (RSM) based on Doehlert design as optimization method. EB removal efficiency and energy consumption were considered model responses after 30 minutes of electrolysis. Analysis of variance (ANOVA) revealed that the quadratic model was adequately fitted to the experimental data with R² (0.9819), adj-R² (0.9276) and low Fisher probability (< 0.0181) for EB removal model, and R² (0.9968), adj-R² (0.9872) and low Fisher probability (< 0.0014) relative to the energy consumption model reflected a robust statistical significance. The energy consumption model significantly depends on current density, as expected. The foregoing results obtained by RSM led to the following optimal conditions for EB degradation: current intensity of 0.2 A, iron concentration of 9.397 mM, and stirring rate of 500 rpm, which gave a maximum decolorization rate of 98.15 % with a minimum energy consumption of 0.74 kWh m⁻³ at 30 min of electrolysis.

Keywords: electrofenton, erythrosineb, dye, response serface methdology, carbon felt

Procedia PDF Downloads 50
7709 The Impact of Innovation Efficiency on the Production of New Knowledge: A Manufacturing Firm Level Perspective

Authors: Vasilios Kanellopoulos

Abstract:

The present paper examines the effect of innovation efficiency on the production of new knowledge from a firm level perspective. It resorts to the Greek version of community innovation survey (CIS 2012-2014 microdata) and employs 1274 firms of the manufacturing, which constitutes the main sector of examination. It assumes a knowledge production function (KPF) and finds that R&D spillovers related to the expenditures on innovation activities, internal R&D, external R&D, skilled labor, and the expenditures in the acquisition of machinery have a positive and significant effect on the production of new knowledge when OLS techniques are applied. However, innovation efficiency comes from a Banker and Morey (1986) data envelopment analysis (DEA) with categorical variables has a statistically insignificant impact on the production of new knowledge measured by firm’s turnover.

Keywords: firms, innovation efficiency, production of new knowledge, R&D spillovers

Procedia PDF Downloads 108
7708 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron

Authors: Liqiang Gong, Hanguang Fu

Abstract:

In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.

Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations

Procedia PDF Downloads 44
7707 Relationship of Trace Minerals Nutritional Status of Camel (Camelus dromedarius) to Their Contents in Egyptian Feedstuff

Authors: Maha Mohamed Hady Ali, M. A. El-Sayed

Abstract:

Camel (Camelus dromedarius) is very important animal in many arid and semi-arid zones of tropical and subtropical regions as it serves as dual purpose providing meat and milk for human and as draft animal. Camel, like other animal must receive all essential nutrients despite the hostile environment. A study was conducted to evaluate the nutritional status of some micro-minerals of camel under Egyptian environmental condition. Forty five blood samples were collected from apparently healthy male camels with an average age between 2-6 years at the slaughter house in Cairo province, Egypt. The animals were fed mainly on berseem (Trifolium alexandrinum) or concentrate with straw before slaughtering. The collected serum and feedstuff samples were subjected to copper, iron, selenium and zinc analysis using Atomic absorption spectrophotometer. The data showed variation in the level of copper, iron, selenium and zinc in the serum of the dromedary camel as well as in the feedstuffs. Furthermore, the results indicated that the micro- minerals status of feeds may not always reflected as such in camel blood suggesting some role of bioavailability. The main reason for the lack of such reflection seems to be the wide diversity exists in the surrounding environment (forages and plants) as well as the bioavailability of such minerals. Since the requirement of micro-minerals have not been established for camel, more researches must be focused on this topic.

Keywords: camel, copper, egypt, feed stuff, iron, selenium, zinc

Procedia PDF Downloads 487
7706 Preparation and Quality Control of a New Radiolabelled Complex of Spion

Authors: H. Yousefnia, SJ. Ahmadi, S. Sajadi, S. Zolghadri, A. Bahrami-Samani, M. Bagherzadeh

Abstract:

Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) as the multitask agents have showed advantageous characteristics. The aim of this study was the preparation and quality control of 153Sm-DTPA-DA-SPION complex. Samarium-153 was produced by neutron irradiation of the enriched 152Sm2O3 in a research reactor for 5 d. For radiolabeling purposes, 8 mg of the ligand was added to the vial containing 153SmCl3 and the mixture was sonicated 30 min, while pH was adjusted to 7-8. The radiochemical purity of the complex was checked by the ITLC method using NH4OH:MeOH:H2O (0.2:2:4) as the mobile phase. This new radiolabeled complex was prepared with a radiochemical purity of higher than 98% in 30 min at the optimized condition. The complex was kept at room temperature and in human serum at 37 °C for 48 h, showed no loss of 153Sm from the complex. Considering all of these features, this new radiolabeled complex can be considered as a good therapeutic agent; however, further studies on its biological behavior are still needed.

Keywords: iron nanoparticles, preparation, quality control, 153Sm

Procedia PDF Downloads 307
7705 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba

Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo

Abstract:

Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.

Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba

Procedia PDF Downloads 414
7704 Iron Doped Biomaterial Calcium Borate: Synthesis and Characterization

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

Colemanite is the most common borate mineral, and the main source of the boron required by plants, human, and earth. Transition metals exhibit optical and physical properties such as; non-linear optical character, structural diversity, thermal stability, long cycle life and luminescent radiation. The doping of colemanite with a transition metal, bring it very interesting and attractive properties which make them applicable in industry. Iron doped calcium borate was synthesized by conventional solid state method at 1200 °C for 12 h with a systematic pathway. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS) were used to characterize structural and morphological properties. Also, thermal properties were recorded by thermogravimetric-differential thermal analysis (TG/DTA). 

Keywords: colemanite, conventional synthesis, powder x-ray diffraction, borates

Procedia PDF Downloads 313
7703 Restless Leg Syndrome as the Presenting Symptom of Neuroendocrine Tumor

Authors: Mustafa Cam, Nedim Ongun, Ufuk Kutluana

Abstract:

Introduction: Restless LegsSyndrome (RLS) is a common, under-recognized disorder disrupts sleep and diminishes quality of life (1). The most common conditions highly associated with RLS include renalfailure, iron and folic acid deficiency, peripheral neuropathy, pregnancy, celiacdisease, Crohn’sdiseaseandrarelymalignancy (2).Despite a clear relation between low peripheral iron and increased prevalence and severity of RLS, the prevalence and clinical significance of RLS in iron-deficientanemic populations is unknown (2). We report here a case of RLS due to iron deficiency in the setting of neuroendocrinetumor. Report of Case: A 35 year-old man was referred to our clinic with general weakness, weight loss (10 kg in 2 months)and 2-month history of uncomfortable sensations in his legs with urge to move, partially relieved by movement. The symptoms were presented very day, worsening in the evening; the discomfort forced the patient to getup and walk around at night. RLS was severe, with a score of 22 at the International RLS ratingscale. The patient had no past medical history. The patient underwent a complete set of blood analyses and the following ab normal values were found (normal limitswithinbrackets): hemoglobin 9.9 g/dl (14-18), MCV 70 fL (80-94), ferritin 3,5 ng/mL (13-150). Brain and spinemagnetic resonance imaging was normal. The patient consultated with gastroenterology clinic and gastointestinal systemendoscopy was performed for theetiology of the iron deficiency anemia. After the gastricbiopsy, results allowed us to reach the diagnosis of neuroen docrine tumor and the patient referred to oncology clinic. Discussion: The first important consideration from this case report is that the patient was referred to our clinic because of his severe RLS symptoms dramatically reducing his quality of life. However, our clinical study clearly demonstrated that RLS was not the primary disease. Considering the information available for this patient, we believe that the most likely possibility is that RLS was secondary to iron deficiency, a very well-known and established cause of RLS in theliterature (3,4). Neuroendocrine tumors (NETs) are rare epithelial neoplasms with neuroendocrine differentiation that most commonly originate in the lungs and gastrointestinal tract (5). NETs vary widely in their clinical presentation; symptoms are often nonspecific and can be mistaken for those of other more common conditions (6). 50% of patients with reported disease stage have either regional or distant metastases at diagnosis (7). Accurate and earlier NET diagnosis is the first step in shortening the time to optimal care and improved outcomes for patients (8). The most important message from this case report is that RLS symptoms can sometimes be thesign of a life-threatening condition. Conclusion: Careful and complete collection of clinical and laboratory data should be carried out in RLS patients. Inparticular, if RLS onset coincides with weight loss and iron deficieny anemia, gastricendos copy should be performed. It is known about that malignancy is a rare etiology in RLS patients and to our knowledge; it is the first case with neuro endocrine tumor presenting with RLS.

Keywords: neurology, neuroendocrine tumor, restless legs syndrome, sleep

Procedia PDF Downloads 263
7702 Bacterial Recovery of Copper Ores

Authors: Zh. Karaulova, D. Baizhigitov

Abstract:

At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.

Keywords: bacterial recovery, copper ore, bioleaching, bacterial inoculum

Procedia PDF Downloads 45
7701 A Transition Towards Sustainable Feed Production Using Algae: The Development of Algae Biotechnology in the Kingdom of Saudi Arabia (DAB-KSA Project)

Authors: Emna Mhedhbi, Claudio Fuentes Grunewald

Abstract:

According to preliminary results of DAB-KSA project and considering the current 0.09-ha microalgae pilot plant facilities, we can produce 2.6 tons/year of microalgae biomass for proteins applications in animal feeds in KSA. By 2030, our projections are to reach 65,940,593.4 tons deploying 100.000 ha's production plants. We also have assessed the energy cost (industrial) in KSA (€0.061/kWh) and compared to (€0.32/kWh)in Germany, we can argue a clear lower OPEX for microalgae biomass production cost in KSA.

Keywords: microalgae, feed production, bioprocess, fishmeal

Procedia PDF Downloads 146
7700 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 61
7699 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation

Procedia PDF Downloads 150
7698 Feature Selection for Production Schedule Optimization in Transition Mines

Authors: Angelina Anani, Ignacio Ortiz Flores, Haitao Li

Abstract:

The use of underground mining methods have increased significantly over the past decades. This increase has also been spared on by several mines transitioning from surface to underground mining. However, determining the transition depth can be a challenging task, especially when coupled with production schedule optimization. Several researchers have simplified the problem by excluding operational features relevant to production schedule optimization. Our research objective is to investigate the extent to which operational features of transition mines accounted for affect the optimal production schedule. We also provide a framework for factors to consider in production schedule optimization for transition mines. An integrated mixed-integer linear programming (MILP) model is developed that maximizes the NPV as a function of production schedule and transition depth. A case study is performed to validate the model, with a comparative sensitivity analysis to obtain operational insights.

Keywords: underground mining, transition mines, mixed-integer linear programming, production schedule

Procedia PDF Downloads 135
7697 Correlation between Copper Uptake and Decrease of Copper (Hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa

Authors: Khaled M. Khleifat

Abstract:

Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram-positive bacteria Bacillusthuringiensis strain Israelisas well as Gram-negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron-binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.

Keywords: Pseudomonas aeruginosa, hypocupremia, correlation, PCV

Procedia PDF Downloads 290
7696 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 346
7695 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis

Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim

Abstract:

In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.

Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element

Procedia PDF Downloads 332
7694 Enhanced Photocatalytic Hydrogen Production on TiO2 by Using Carbon Materials

Authors: Bashir Ahmmad, Kensaku Kanomata, Fumihiko Hirose

Abstract:

The effect of carbon materials on TiO2 for the photocatalytic hydrogen gas production from water/alcohol mixtures was investigated. Single walled carbon nanotubes (SWNTs), multi walled carbon nanotubes (MWNTs), carbon nanofiber (CNF), fullerene (FLN), graphite (GP), and graphite silica (GS) were used as co-catalysts by directly mixing with TiO2. Drastic synergy effects were found with increase in the amount of hydrogen gas by a factor of ca. 150 and 100 for SWNTs and GS with TiO2, repectively. The order of H2 gas production for these carbon materials was SWNTs > GS >> MWNTs > FLN > CNF > GP. To maximize the hydrogen production from SWNTs/TiO2, various parameters of experimental conditions were changed. Also, a comparison between Pt/TiO2, WNTs/TiO2 and GS/TiO2 was made for the amount of H2 gas production. Finally, the recyclability of SWNTs/TiO2 and GS/TiO2 were tested.

Keywords: photocatalysis, carbon materials, alcohol reforming, hydrogen production, titanium oxide

Procedia PDF Downloads 455
7693 Antiulcer Potential of Heme Oxygenase-1 Inducers

Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej

Abstract:

Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.

Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc

Procedia PDF Downloads 485
7692 A Two Phase VNS Algorithm for the Combined Production Routing Problem

Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub

Abstract:

Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literature

Keywords: logistic, production, distribution, variable neighbourhood search

Procedia PDF Downloads 306
7691 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 198