Search results for: silver diamine fluoride
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 107

Search results for: silver diamine fluoride

77 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex

Authors: S. Ashrafpour, T. Tohidi Moghadam, B. Ranjbar

Abstract:

Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 μM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme- AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.

Keywords: Nanocarrier, Nanoparticles, Surface Plasmon Resonance, Quenching Fluorescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
76 Influence of AgNO3 Treatment on the Flavonolignan Production in Cell Suspension Culture of Silybum marianum (L.) Gaertn

Authors: Anna Vildová, H. Hendrychová, J. Kubeš, L. Tůmová

Abstract:

The abiotic elicitation is one of the methods for increasing the secondary metabolites production in plant tissue cultures and it seems to be more effective than traditional strategies. This study verified the use of silver nitrate as elicitor to enhance flavonolignans and flavonoid taxifolin production in suspension culture of Sylibum marianum (L.) Gaertn. Silver nitrate in various concentrations (5.887.10-3 mol/L, 5.887.10-4 mol/L, 5.887.10-5 mol/L) was used as elicitor. The content of secondary metabolites in cell suspension cultures was determined by high performance liquid chromatography. The samples were taken after 6, 12, 24, 48, 72 and 168 hours of treatment. The highest content of taxifolin production (2.2 mg.g-1) in cell suspension culture of Silybum marianum (L.) Gaertn. was detected after silver nitrate (5.887.10-4 mol/L) treatment and 72 h application. Flavonolignans such as silybinA, silybin B, silydianin, silychristin, isosilybin A, isosilybin B were not produced by cell suspension culture of S. marianum after elicitor treatment. Our results show that the secondarymetabolites could be released from S. marianum cells into the nutrient medium by changed permeability of cell wall.

Keywords: Silybum marianum (L.) Gaertn., elicitation, silver nitrate, taxifolin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
75 Investigation on Polymer Based Nano-Silver as Food Packaging Materials

Authors: A. M. Metak, T. T. Ajaal

Abstract:

Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based upon the relevant European safety Directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices.

Keywords: Nano-silver, antimicrobial food packaging, migration, titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6278
74 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation

Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh

Abstract:

This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application.

Keywords: De-wetting, thermal annealing, metal, melting point, porous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
73 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
72 Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
71 A Comparison on Healing Effects of an Ayurvedic Preparation and Silver Sulfadiazine on Burn Wounds in Albino Rats

Authors: S. S. Pathak, M. A. Borkar, S. S. Patel

Abstract:

To compare Healing Effects of an Ayurvedic Preparation and Silver Sulfadiazine on burn wounds in Albino Rats. Methods: Albino rats– 30 male / female rats weighing between 150-200 g were used in the study. They were individually housed and maintained on normal diet and water ad libitum. Partial thickness burn wounds were inflicted, on overnight-starved animals under pentobarbitone (30mg/kg, i.p.) anaesthesia, by pouring hot molten wax at 80oC into a plastic cylinder of 300 mm2 circular openings placed on the shaven back of the animal. Apart from the drugs under investigation no local/ systemic chemotherapeutic cover will be provided to animals. All the animals were assessed for the percentage of wound contraction, signs of infection, scab formation and histopathological examination. Results: Percentage of wound healing was significantly better in the test ointment group compared to the standard. Signs of infection were observed in more animals in the test ointment group compared to the standard. Scab formation also took place earlier in the test ointment group compared to standard. Epithelial regeneration and healing profile was better in the test ointment compared to the standard. Moreover the test ointment group did not show any raised margins in the wound or blackish discoloration as was observed in silver sulfadiazine group. Conclusion: The burn wound healing effect of the ayurvedic ointment under study is better in comparison to standard therapy of silver sulfadiazine. The problem of infection encountered with the test ointment can be overcome by changing the concentrations and proportions of the ingredients in the test ointment which constitutes the further plan of the study.

Keywords: Ayurvedic test ointment, burn wounds, Silver sulfadiazine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
70 Two-Photon Ionization of Silver Clusters

Authors: V. Paployan, K. Madoyan, A. Melikyan, H. Minassian

Abstract:

In this paper, we calculate the two-photon ionization (TPI) cross-section for pump-probe scheme in Ag neutral cluster. The pump photon energy is assumed to be close to the surface plasmon (SP) energy of cluster in dielectric media. Due to this choice, the pump wave excites collective oscillations of electrons-SP and the probe wave causes ionization of the cluster. Since the interband transition energy in Ag exceeds the SP resonance energy, the main contribution into the TPI comes from the latter. The advantage of Ag clusters as compared to the other noble metals is that the SP resonance in silver cluster is much sharper because of peculiarities of its dielectric function. The calculations are performed by separating the coordinates of electrons corresponding to the collective oscillations and the individual motion that allows taking into account the resonance contribution of excited SP oscillations. It is shown that the ionization cross section increases by two orders of magnitude if the energy of the pump photon matches the surface plasmon energy in the cluster.

Keywords: Resonance enhancement, silver clusters, surface plasmon, two-photon ionization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
69 Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms

Authors: L. Steponavičiūtė, L. Steponavičienė

Abstract:

Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (Escherichia coli, Staphylococcus aureus and Candida albicans) and terrestrial flora (Phaseolus vulgaris and Lepidium sativum). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles.

Keywords: Ecosystems, ecotoxicology, nanomaterials, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
68 In vivo Therapeutic Potential of Biologically Synthesized Silver Nanoparticles

Authors: Kalakotla Shanker, G. Krishna Mohan

Abstract:

Nowadays, nanoparticles are being used in pharmacological studies for their exclusive properties such as small size, more surface area, biocompatibility and enhanced solubility. In view of this, the present study aimed to evaluate the antihyperglycemic potential of biologically synthesized silver nanoparticles (BSSNPs) and Gymnema sylvestre (GS) extract. The SEM and SEM analysis divulges that the BSSNPs were spherical in shape. EDAX spectrum exhibits peaks for the presence of silver, carbon, and oxygen atoms in the range of 1.0-3.1 keV. FT-IR reveals the binding properties of active bio-constituents responsible for capping and stabilizing BSSNPs. The results showed increased blood glucose, huge loss in body weight and downturn in plasma insulin. The GS extract (200 mg/kg, 400 mg/kg), BSSNPs (100 mg/kg, 200 mg/kg) and metformin 50 mg/kg were administered to the diabetic rats. BSSNPs at a dose level of 200 mg/kg (b.wt.p.o.) showed significant inhibition of (p<0.001) blood glucose levels as compared with GS extract treated group. The results obtained from study indicate that the BSSNP shows potent anti-diabetic activity.

Keywords: BSSNP, G.sylvetre, wistar rats, antihyperglycemic activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
67 The Inhibition of Relapse of Orthodontic Tooth Movement by NaF Administration in Expressions of TGF-β1, Runx2, Alkaline Phosphatase and Microscopic Appearance of Woven Bone

Authors: R. Sutjiati, Rubianto, I. B. Narmada, I. K. Sudiana, R. P. Rahayu

Abstract:

The prevalence of post-treatment relapse in orthodontics in the community is high enough; therefore, relapses in orthodontic treatment must be prevented well. The aim of this study is to experimentally test the inhibition of relapse of orthodontics tooth movement in NaF of expression TGF-β1, Runx2, alkaline phosphatase (ALP) and microscopic of woven bone. The research method used was experimental laboratory research involving 30 rats, which were divided into three groups. Group A: rats were not given orthodontic tooth movement and without NaF. Group B: rats were given orthodontic tooth movement and without 11.5 ppm by topical application. Group C: rats were given orthodontic tooth movement and 11.75 ppm by topical application. Orthodontic tooth movement was conducted by applying ligature wires of 0.02 mm in diameter on the molar-1 (M-1) of left permanent maxilla and left insisivus of maxilla. Immunohistochemical examination was conducted to calculate the number of osteoblast to determine TGF β1, Runx2, ALP and haematoxylin to determine woven bone on day 7 and day 14. Results: It was shown that administrations of Natrium Fluoride topical application proved effective to increase the expression of TGF-β1, Runx2, ALP and to increase woven bone in the tension area greater than administration without natrium fluoride topical application (p < 0.05), except the expression of ALP on day 7 and day 14 which was significant. The results of the study show that NaF significantly increases the expressions of TGF-β1, Runx2, ALP and woven bone. The expression of the variables enhanced on day 7 compared on that on day 14, except ALP. Thus, it can be said that the acceleration of woven bone occurs on day 7.

Keywords: TGF-β1, Runx2, ALP, woven bone, natrium fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
66 Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants

Authors: Dionisios Panagiotaras, Elias Stathatos, Dimitrios Papoulis

Abstract:

 Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.

Keywords: Clay mineral, nanotubular Halloysite, Photocatalysis, Titanium Dioxide, Silver modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
65 Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Authors: M. Saravanan

Abstract:

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Keywords: Bionanoparticles, UV-visible spectroscopy, AtomicForce Microscopy, Extracellular synthesis, Multi drug resistant, antimicrobial activity, Nanomedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
64 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: Supercritical CO2, zinc-electroplating, sodium fluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
63 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)

Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria

Abstract:

The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.

Keywords: Differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
62 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Authors: Abhishek Chandra, Man Singh

Abstract:

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Keywords: Silver nanoparticle, surfactant, methylene blue, amino acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
61 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, gas permeability, polymer membrane, ionic liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
60 Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice

Authors: Ruchi Vyas, Sanjay Singh, Rashmi Sisodia

Abstract:

Chlorophytum borivillianum root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV–visible analysis (UV–vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of CB-AgNPs in testicular constituents against gamma irradiation in mice.

Keywords: Chlorophytum borivillianum, gamma radiation, radioprotective, silver nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
59 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6309
58 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
57 Decreasing Environmental Pollution in Superphosphate Production Using Apatite and Phosphorite Mixture

Authors: R. Guliyev

Abstract:

The enhanced need for food items is receiving more importance due to a gradual increase in the world population and, in this scenario, fertilizers play a very important role in agriculture. In this study, the production of the normal superphosphate was investigated with a continuous chamber method by adding potassium chloride to a mixture of Hibin apatite and Kingisepp phosphorite. In the experiments, the following parameters were selected: The concentration of sulfuric acid (54–66% (w/w)), the stoichiometric norm of sulfuric acid (100, 107, 110, 114% (w/w)), the ratio of apatite/phosphorite in the mixture of phosphate (95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35,60/40, 55/45, 50/50 (w/w)), potassium chloride/the mixture of phosphate (1/50, 2/50, 3/50,4/50, 5/50 (w/w)), and the reaction time (2–8 min). It was observed that by adding potassium chloride to a low-grade phosphorite and using it to substitute a fraction of high-grade apatite in the normal superphosphate production not only resulted in a high-quality product but also eliminated the waiting period for the maturation of superphosphate in the storage. The objective of this study was to produce a normal superphosphate fertilizer by using a continuous chamber method in order to accelerate the production process and to reduce the environmental pollution caused by fluoride gases by eliminating the maturation time in the storage.

Keywords: Continuous chamber method, environmental pollution, fluoride gases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
56 Relationship of Reaction Temperature on Phosphate Oligomers Reactivity to Properties of Soy-Polyurethane

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foam (PUF) were prepared by reacting polyols synthesized from soy-oil into mixture of 2,4- Toluene diisocyanate (TDI) with 4,4--Methylene Diamine Isocyanate (MDI) with ratio of 70:30. The polyols obtained via esterification reaction were categorize into different temperature of reaction and by used of varied concentration of phosphoric acid catalyst. The purpose of catalysts is to shifting selectivity to a desired and value added of product. The effect of stoichiometric balance (molar ratio of epoxide/ethylene glycol) to the concentration of the catalyst on the final properties was evaluated.

Keywords: temperature, phosphate, soy polyurethane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
55 Effect of Silver Nanoparticles Size Prepared by Photoreduction Method on Optical Absorption Spectra of TiO2/Ag/N719 Dye Composite Films

Authors: C. Photiphitak, P. Rakkwamsuk, P. Muthitamongkol, C. Sae-Kung, C. Thanachayanont

Abstract:

TiO2/Ag composite films were prepared by incorporating Ag in the pores of mesoporous TiO2 films using a photoreduction method. The Ag nanoparticle sizes were in a range of 3.66-38.56 nm. The TiO2/Ag composite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscropy (TEM). The TiO2 films and TiO2/Ag composite films were immersed in a 0.3 mM N719 dye solution and characterized by UV-Vis spectrophotometer. The TiO2/Ag/N719 composite film showed that an optimal size of Ag nanoparticles was 19.12 nm and, hence, gave the maximum optical absorption spectra. The improved absorption was due to surface plasmon resonance induced by the Ag nanoparticles to enhance the absorption coefficient of the dye.

Keywords: Silver nanoparticle, TiO2/Ag composite films, Optical properties, surface plasmon resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
54 An Investigation of New Phase Diagram of Ag2SO4 - CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: Ag2SO4-CaSO4 (Silver sulphate–Calcium Sulphate) binaries system, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
53 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid-state electrolyte, semi-transparency, scale up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
52 Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application

Authors: D. Berdous, H. Ferfera-Harrar

Abstract:

Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing.

Keywords: Antibacterial activity, nanocomposites, silver nanoparticles, superabsorbent hydrogel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
51 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.

Keywords: Antimicrobial hydrogel, carboxymethyl cellulose, cellulose, grafting, olive pulp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
50 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: Boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, Maximum Power Point Tracking, Silver Mean Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
49 Cytotoxic Effects of Engineered Nanoparticles in Human Mesenchymal Stem Cells

Authors: Ali A. Alshatwi, Vaiyapuri S. Periasamy, Jegan Athinarayanan

Abstract:

Engineered nanoparticles’ usage rapidly increased in various applications in the last decade due to their unusual properties. However, there is an ever increasing concern to understand their toxicological effect in human health. Particularly, metal and metal oxide nanoparticles have been used in various sectors including biomedical, food and agriculture. But their impact on human health is yet to be fully understood. In this present investigation, we assessed the toxic effect of engineered nanoparticles (ENPs) including Ag, MgO and Co3O4 nanoparticles (NPs) on human mesenchymal stem cells (hMSC) adopting cell viability and cellular morphological changes as tools The results suggested that silver NPs are more toxic than MgO and Co3O4NPs. The ENPs induced cytotoxicity and nuclear morphological changes in hMSC depending on dose. The cell viability decreases with increase in concentration of ENPs. The cellular morphology studies revealed that ENPs damaged the cells. These preliminary findings have implications for the use of these nanoparticles in food industry with systematic regulations.

Keywords: Cobalt oxide, Human mesenchymal stem cells, MgO, Silver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
48 Wetting Properties of Silver Based Alloys

Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai

Abstract:

The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygenalloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.

Keywords: Contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488