WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/3103,
	  title     = {Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates},
	  author    = {M. Saravanan},
	  country	= {},
	  institution	= {},
	  abstract     = {Antimicrobial resistant is becoming a major factor in
virtually all hospital acquired infection may soon untreatable is a
serious public health problem. These concerns have led to major
research effort to discover alternative strategies for the treatment of
bacterial infection. Nanobiotehnology is an upcoming and fast
developing field with potential application for human welfare. An
important area of nanotechnology for development of reliable and
environmental friendly process for synthesis of nanoscale particles
through biological systems In the present studies are reported on the
use of fungal strain Aspergillus species for the extracellular synthesis
of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The
report would be focused on the synthesis of metallic bionanoparticles
of silver using a reduction of aqueous Ag+ ion with the
culture supernatants of Microorganisms. The bio-reduction of the
Ag+ ions in the solution would be monitored in the aqueous
component and the spectrum of the solution would measure through
UV-visible spectrophotometer The bionanoscale particles were
further characterized by Atomic Force Microscopy (AFM), Fourier
Transform Infrared Spectroscopy (FTIR) and Thin layer
chromatography. The synthesized bionanoscale particle showed a
maximum absorption at 385 nm in the visible region. Atomic Force
Microscopy investigation of silver bionanoparticles identified that
they ranged in the size of 250 nm - 680 nm; the work analyzed the
antimicrobial efficacy of the silver bionanoparticles against various
multi drug resistant clinical isolates. The present Study would be
emphasizing on the applicability to synthesize the metallic
nanostructures and to understand the biochemical and molecular
mechanism of nanoparticles formation by the cell filtrate in order to
achieve better control over size and polydispersity of the
nanoparticles. This would help to develop nanomedicine against
various multi drug resistant human pathogens.},
	    journal   = {International Journal of Biotechnology and Bioengineering},
	  volume    = {4},
	  number    = {8},
	  year      = {2010},
	  pages     = {505 - 508},
	  ee        = {https://publications.waset.org/pdf/3103},
	  url   	= {https://publications.waset.org/vol/44},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 44, 2010},
	}