Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

Authors: Hoda Aleali, Nastaran Mansour, Maryam Mirzaie

Abstract:

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.

Keywords: Nanoscale materials, Silver sulfide nanoparticles, Nonlinear absorption, Nonlinear scattering, Optical limiting.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108873

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070

References:


[1] Sendhil K., Vijayan C., Kothiyal M. P. (2006). “Low-threshold optical power limiting of cw laser illumination based on nonlinear refraction in zinc tetraphenyl porphyrin”. Opt Laser Technol 38, 512-515.
[2] Yu B., Zhu C., Gan F., Huang Y. (1997). “Optical limiting properties of In2O3 nanoparticles under cw laser illumination”, Opt Mater 7, 103-107.
[3] Li Q. S., Liu C. L., Liu Z. G., and Gong Q. H., (2005). “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13, 1833–1838.
[4] Venkatram N., Kumar R. S. S., and Rao D. N., (2006). “Nonlinear absorption and scattering properties of cadmium sulphide nanocrystals with its application as a potential optical limiter,” J. Appl. Phys. 100, 074309–1–8.
[5] Yong G. S. He, K. T., Zheng Q. D., Sahoo Y., Baev A., Ryasnyanskiy A. I., and Prasad P. N., (2007). “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15, 12818–12833.
[6] Tutt L. W. and Boggess T. F., (1993). “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials” Prog. Quantum Electron. 17, 299.
[7] Li Q., Liu C., Gong L., Yu X. and Cao C., (2008). “Nonlinear scattering, absorption and refraction processes in the colloidal suspensions of Bi2S3 and CuS nanoparticles and their combined effects for broadband optical limiting” J. Opt. Soc. Am. 25, 1978-1983.
[8] Padilha L. A., Fu J., Hagan D. J., Van Stryland E. W., Cesar C. L., Barbosa L. C., Cruz C. H. B., Buso D., and Martucci A., (2007). “Frequency degenerate and nondegenerate twophoton absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75, 075325.
[9] Whelan A. M., Benrezzak S., Brennan M. E., Kelly J. M., and Blau W. J., (2003). “Nonlinear optical properties of metal and semiconductor nanoparticles,” Proc. SPIE 4876, 1257–1264.
[10] Ganeev R. A., Baba M., Morita M., Rau D., Fujii H., Ryasnyansky A. I., Ishizawa N., Suzuki M., and Kuroda H., (2004). “Nonlinear optical properties of CdS and ZnS nanoparticles doped into zirconium oxide films,” J. Opt. A, Pure Appl. Opt. 6, 447–453.
[11] Pan L. Y., Tamai N., Kamada K., and Deki S., (2007). “Nonlinear optical properties of thiol-capped CdTe quantum dots in nonresonant region,” Appl. Phys. Lett. 91, 051902.
[12] Padilha L. A., Fu J., Hagan D. J., Van Stryland E. W., Cesar C. L., Barbosa L. C., Cruz C. H. B., Buso D., and Martucci A., (2007). “Frequency degenerate and nondegenerate twophoton absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75, 075325.
[13] Karimzadeh R., Aleali H., Mansour N., (2011) Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter R. Karimzadeh, H. Aleali, N. Mansour, Optics Communications 284 2370–2375.
[14] Liao Z. M., Hou C., Zhang H. Z., Wang D. S. and Yu D. P., (2010). ” Evolution of resistive switching over bias duration of single Ag2S nanowires”, Appl. Phys. Lett 96, 109.
[15] Xie Y., Heo S. H., Kim Y. N., Yoo S. H. and Cho S. O., (2010). “Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires”, Nanotechnology 21, 015703.
[16] Brelle M. C., Zhang J. Z., Nguyen L. and Mehra R. K., (1999). Synthesis and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S Semiconductor Colloidal Nanoparticles. J. Phys. Chem. A 103, 10194.
[17] Karimzadeh R., Mansour N., (2010). Thermo-optic nonlinear response of silver nanoparticle colloids under a low power laser irradiation at 532 nm. Phys. Status Solidi B 247, 365.
[18] Sarkhosh L., Aleali H., Karimzadeh R., Mansour N., (2010) "Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone", Phys. Status Solidi A 207, No. 10, 2303–2310.
[19] Anthony S. P., (2009). “Synthesis of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication” Mater. Lett. 63, 773-776.
[20] Sheik-bahae M., Said A. A., Wei T. H., Hagan D. J., Van stryland E. W., (1990). Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760.