Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108056

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2635

References:


[1] B. Nowack, “Nanosilver revisited downstream”, Science, vol. 330, pp. 1054-1055, 2010.
[2] R. Kaegi, B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, et al., “Release of silver nanoparticles from outdoor facades’, Environ. Pollut., vol. 158, no. 9, pp. 2900-2905, 2010.
[3] Y.S. El-Temsah, E.J. Joner, “Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil”, Environ. Toxicol., vol. 27, pp. 42-49, 2012.
[4] R. Amooaghaiea, F. Tabatabaeia, A.-m. Ahadia, “Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses”, Ecotox. Environ. Safe., vol. 113, pp. 259-270, 2015.
[5] J. Yasur, P.U. Rani, “Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology”, Environ. Sci. Pollut. Res. Int., vol. 20, no. 12, pp. 8636-48, 2013.
[6] E.A. Abdel-Azeem, B.A. Elsayed, “Phytotoxicity of silver nanoparticles on Vicia faba seedlings”, NY. Sci. J., vol. 6, no. 12, pp. 148-156, 2013.
[7] R. Barrena, E. Casals, J. Colon, X. Font, A. Sanchez, V. Puntes, “Evaluation of the ecotoxicity of model nanoparticles”, Chemosphere, vol. 75, pp. 850-857, 2009.
[8] P. Sharma, D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna, S. Arora, “Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea”, Appl. Biochem. Biotechnol., vol. 167, pp. 2225-33, 2012.
[9] L. Yin, B.P. Colman, B.M. McGill, J.P. Wright, E.S. Bernhardt, “Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants”, PLoS One., vol. 7, no. 10, e47674, 2012.
[10] H.M.H. Salama, “Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.)”, Int. Res. J. Biotech., vol. 3, pp. 190-197, 2012.
[11] N. Savithramma, S. Ankanna, G. Bhumi, “Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon”, Nano Vision, vol. 2, no. (1, 2 &3), pp. 61-68, 2012.
[12] A. Parveen, S. Rao, “Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum”, J. Clust. Sci., DOI 10.1007/s10876-014-0728-y, 2014.
[13] R. Kaveh, Y.S. Li, S. Ranjbar, R. Tehrani, C.L. Brueck, B. Van Aken, “Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions”, Environ. Sci. Technol., vol. 47, no. 18, pp. 10637-44, 2013.
[14] J. Geisler-Lee, Q. Wang, Y. Yao, W. Zhang, M. Geisler, K. Li, et al., “Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana”, Nanotoxicology, vol. 7, no. 3, pp. 323-337, 2013.
[15] H. Qian, X. Peng, X. Han, J. Ren, L. Sun, Z. Fu, “Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana”, J. Environ. Sci., vol. 25, pp. 1947- 1955, 2013.
[16] C. Vannini, G. Domingo, E. Onelli, B. Prinsi, M. Marsoni, L. Espen, et al., “Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate”, PLoS One., vol. 8, no. 7, e6875, 2013.
[17] A. Oukarroum, L. Barhoumi, L. Pirastru, D. Dewez, “Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba”, Environ. Toxicol. Chem., vol. 32, no. 4, pp. 902-7, 2013.
[18] D.K. Tiwari, N. Dasgupta-Schubert, L.M. Villasenǒr Cendejas, J. Villegas, L, Carreto Montoya, S.E. Borjas García, “Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture”, Appl. Nanosci., vol. 4, pp. 577-591, 2013.
[19] M.H. Siddiqui, M.H. Al-Whaibi, “Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.)”, Saudi J. Bio. Sci., vol. 21, no. 1, pp. 13-17, 2014.
[20] E.H. Dehkourdi, M. Chehrazi, H. Hosseini, M. Hosseini, “The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.)”, Int. J. Biosci., vol. 4, no. 5, pp. 141-145, 2014.
[21] F. Yang, C. Liu, F.Q. Gao, M.Y. Su, X. Wu, L. Zheng, et al., “The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction”, Biol. Trace Elem. Res., vol. 119, no.1, pp. 77-88, 2007.
[22] R.Z. Baalbaki, R.A. Zurayk, S.N. Bleik, A. Talhuk “Germination and seedling development of drought susceptible wheat under moisture stress”, Seed Sci. Technol., vol. 17, pp. 291-302, 1990.
[23] L. Zheng, F. Hong, S. Lu, C. Liu, “Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach”, Biolo. Trace. Element. Res., vol. 104, no. 1, pp. 82-93, 2005.
[24] C.M. Lu, C.Y. Zhang, J.Q. Wen, G.R. Wu, M.X. Tao, “Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism”, Soybean Sci., vol. 21, pp. 168-172, 2002.
[25] Z. Lei, S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, et al., “Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation”, Biol. Trace Elem. Res., vol. 121, pp. 69-79, 2008.
[26] D. Stampoulis, S.K. Sinha, J.C. White, “Assay-dependent phytotoxicity of nanoparticles to plants”, Environ. Sci. Technol., vol. 43, pp. 9473, 2009.
[27] P. Chandana, K. Ehasanullah, M. Abhijeet, S. Meryam, G. Meetu, “Silver nanoparticles and its effect on seed germination and physiology in Brassica juncea L. (indian mustard) plant”, Adv. Sci. Lett., vol. 20, no. 7-9, pp. 1673-1676, 2014.
[28] E.J. Gubbins, L.C. Batty, J.R. Lead, “Phytotoxicity of silver nanoparticles to Lemna minor L.”, Environ. Pollut., vol. 159, pp. 1551, 2011.
[29] P. Thuesombat, S. Hannongbua, S. Akasit b, S. Chadchawan, “Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth”, Ecotox. Environ. Safe., vol. 104, pp. 302-309, 2014.
[30] U.S. Environmental Protection Agency (USEPA), “Ecological effects test guidelines: Seed germination/root elongation toxicity test”, OPPTS 850, 4200, EPA 712-C-96-154, Washington DC, 1996.
[31] S. Kikui, T. Sasaki, M. Maekawa, A. Miyao, H. Hirochika, H. Matsumoto, et al., “Physiological and genetic analyses of aluminum tolerance in rice, focusing on root growth during germination”, J. Inorg. Biochem., vol. 99, pp. 1837-1844, 2005.
[32] ISTA (International Seed Testing Association), “International rules for seed testing”, Seed Sci. Technol., vol. 21, pp. 1-288, 1996.
[33] R.A. Ellis, E.H. Roberts, “The quantification of ageing and survival in orthodox seeds”, Seed. Sci. Technol., vol. 9, pp. 373-409, 1981.
[34] A.D. Alvarado, K.J. Bradford, J.D. Hewitt, “Osmotic priming of tomato seeds, effects on germination, field emergence, seedling growth and fruit yield”, J. Am. Soc. Hortic. Sci., vol. 112, pp. 427-432, 1987.
[35] S. Ruan, Q. Xue, K. Tylkowska, “The influence of priming on germination of rice Oryzo sativa L. seeds and seedling emergence and performance in flooded soil”, Seed. Sci. Technol., vol. 30, pp. 61-67, 2002.