Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Ameliorating Effects of Silver Nanoparticles Synthesized Using Chlorophytum borivillianum against Gamma Radiation Induced Oxidative Stress in Testis of Swiss Albino Mice

Authors: Ruchi Vyas, Sanjay Singh, Rashmi Sisodia

Abstract:

Chlorophytum borivillianum root extract (CBE) was chosen as a reducing agent to fabricate silver nanoparticles with the aim of studying its radioprotective efficacy. The formation of synthesized nanoparticles was characterized by UV–visible analysis (UV–vis), Fourier transform infra-red (FT-IR), Transmission electron microscopy (TEM), Scanning electron microscope (SEM). TEM analysis showed particles size in the range of 20-30 nm. For this study, Swiss albino mice were selected from inbred colony and were divided into 4 groups: group I- control (irradiated-6 Gy), group II- normal (vehicle treated), group III- plant extract alone and group IV- CB-AgNPs (dose of 50 mg/kg body wt./day) administered orally for 7 consecutive days before irradiation to serve as experimental. CB-AgNPs pretreatment rendered significant increase in body weight and testes weight at various post irradiation intervals in comparison to irradiated group. Supplementation of CB-AgNPs reversed the adverse effects of gamma radiation on biochemical parameters as it notably ameliorated the elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio-protective potential of CB-AgNPs in testicular constituents against gamma irradiation in mice.

Keywords: Chlorophytum borivillianum, gamma radiation, radioprotective, silver nanoparticles.

Digital Object Identifier (DOI): doi.org/1

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966

References:


[1] D. Nath, P. Banerjee, “Green nanotechnology – a new hope for medical biology”, Environ. Toxicol. Pharmacol. 36 (2013) 997–1014.
[2] P. Sagar, K. Haradhan, P. Akhil, T. Tridib, D. Subhadip, S. Dinabandhu, “Starch based biodegradable graft copolymer for the preparation of silver nanoparticles”, Int. J. Biol. Macromol. 81 (2015) 83–90.
[3] M.J. Ahmed, M. Ghulam, M. Ansar, M. B. Tariq, “Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity”, Mater. Lett. 153 (2015) 10–13.
[4] B. A. Rzigalinski, Technol Cancer Res Treat, 4: 651‐9, 2005.
[5] S. S. Ali, J. I. Hardt, K. L. Quick, J. S. Kim Han, B. F.Erlanger, T. T. Huang, C. J. Epstein, and L. L. Dugan, Free Radic Biol Med, 37: 1191 202,2004.
[6] M. Maneesh,H. Jayalekshmi “Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction”. Indian J Clin Biochem. 2006 Sep;21(2):80-9. doi: 10.1007/BF02912918. PubMed PMID: 23105620; PubMed Central PMCID: PMCPMC3453990
[7] A. Agarwal, Gupta, S. Sikka “The role of free radicals and antioxidants in reproduction”. Curr Opin Obstet Gynecol. 2006 Jun;18(3):325-32. doi: 10.1097/01.gco.0000193003.58158.4e. PubMed PMID: 16735834.
[8] Chen H, Liu J, Luo L, et al. Vitamin E, aging and Leydig cell steroidogenesis. Exp Gerontol. 2005 Aug-Sep;40(8-9):728-36. doi: 10.1016/j.exger.2005.06.004. PubMed PMID: 16054318.
[9] Hales DB, Allen JA, Shankara T, et al. Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci. 2005 Dec;1061:120-34. doi: 10.1196/annals.1336.014. PubMed PMID: 16469751.
[10] Oberdorster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010 Jan;267(1):89-105. doi: 10.1111/j.1365-2796.2009.02187.x. PubMed PMID: 20059646.
[11] Sharma HS, Hussain S, Schlager J, et al. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl. 2010;106:359-64. doi: 10.1007/978-3-211-98811-4_65. PubMed PMID: 19812977.
[12] Kim JS, Yoon TJ, Yu KN, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2006 Jan;89(1):338-47. doi: 10.1093/toxsci/kfj027. PubMed PMID: 16237191.
[13] Govindarajan R, Vijayakumar M, Pushpangadan P. Antioxidant approach to disease management and the role of 'Rasayana' herbs of Ayurveda. J Ethnopharmacol. 2005 Jun 03;99(2):165-78. doi: 10.1016/j.jep.2005.02.035. PubMed PMID: 15894123.
[14] Thakur M, Bhargava S, Dixit VK. Immunomodulatory Activity of Chlorophytum borivilianum Sant. F. Evid Based Complement Alternat Med. 2007 Dec;4(4):419-23. doi: 10.1093/ecam/nel094. PubMed PMID: 18227908; PubMed Central PMCID: PMCPMC2176149.
[15] Kumar D, Bhatnagar SP. Pharmacognostical evaluation of Chlorophytum borivilianum root. Anc Sci Life. 2004 Jul;24(1):30-7. PubMed PMID: 22557148; PubMed Central PMCID: PMCPMC3330912.
[16] Kaur R AS, Thukral AK. Enhancing seed germination of Chlorophytum borivilianum sant. Et Fernand. with PGRs, steroidal hormones and zinc. Research Journal of Seed Science. 2009;2(2).
[17] Kenjale RD, Shah RK, Sathaye SS. Anti-stress and anti-oxidant effects of roots of Chlorophytum borivilianum (Santa Pau & Fernandes). Indian J Exp Biol. 2007 Nov;45(11):974-9. PubMed PMID: 18072542.
[18] Panda SK, Das, D., Tripathy, N.K. . A study on antipyretic activity of Chlorophytum borivilianum Sant and Fern. root tubers. International Journal of Pharmaceutical Research and Development. 2011;3:153-156.
[19] R. Kenjale, R. Shah, S. Sathaye “Effects of Chlorophytum borivilianum on sexual behaviour and sperm count in male rats”. Phytother Res. 2008 Jun;22(6):796-801. doi: 10.1002/ptr.2369. PubMed PMID: 18412148.
[20] Singh S., Vyas R., Sisodia R., “Optimum dose selection of CB-AgNPs for in-vivo study is swiss albino mice” unpublished.
[21] H. Ohkhawa, N. Ohishi and K. Yogi “Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction”. Anal. Biochem., 1979, 95, 351-358.
[22] M. S. Moron, J. W. Depierre and B. Mannervik “Levels of GSH, GR and GST activities in rat lung and liver”. Biochim. Biophys. Acta., 1979, 582, 67-78.
[23] P. Sukumaran, K.P. Eldho. “Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects”. Int Nano Lett 2012; 2:32.
[24] P. Mulvaney Surface plasmon spectroscopy of nanosized metal particles Langmiur, 12, 1996, pp. 788-800
[25] P. Dauthal and M. Mukhopadhyay, “Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications,” Industrial & Engineering Chemistry Research 55, no. 36 (September 14, 2016): 9557–77, doi:10.1021/acs.iecr.6b00861
[26] N. M. Griffiths, I. Dublineau, A. Francois, and B. Ksas, “Radiation induced colonic injury: decreased fluid absorption and effects of granisetrona 5-HT3 receptor inhibitor,” Advances in Radiation Biology, vol. 2, pp. 1–10, 1999.
[27] I. H. Lin, D. M. Hau, M. J. Su, and W. C. Chen, “Effects of glycyrrhizae and glycyrrhizic acid on radiation injury in mice,” American Journal of Chinese Medicine, vol. 24, no. 3-4, pp. 279–288, 1996.
[28] G. C. Jagetia, P. Jyothi, and H. Krishnamurthy, “Effect of vindesine sulfate on the radiation-induced alterations in mouse spermatogenesis: a flow cytometric evaluation,” Mutation Research, vol. 398, no. 1-2, pp. 163–174, 1998.
[29] R. K. Yadav, A. L. Bhatia, and R. Sisodia, “Modulation of radiation induced biochemical changes in testis of Swiss albino mice by Amaranthus paniculatus Linn,” Asian Journal of Experimental Sciences, vol. 18, pp. 63–74, 2004.
[30] J. E. Biaglow, M. E. Varnes, E. R Epp, and E. P. Clark, “Anticarcinogenesis and Radiation Protection”, (Cerrutti, P.A., Nygaard, O.F., Simic, M.G., Eds), 1987, 387, Plennum Press, New York.
[31] E. A. Bump and J. M. Brown “Role of glutathione in the radiation response of mammalian cells in vitro and in vivo”. Pharmacol. Ther., 1990, 47, 117-136.
[32] A. Jindal, V. Nunia, and P. K. Goyal, “Prevention of radiation- induced clastogenic effect by diltiazem in mouse bone marrow,” Indian Journal of Nuclear Medicine, 2006, vol. 21, no. 1, pp. 12–17.
[33] A. Fatih Fidan, H. Enginar, H. Cigerci, E. Korcan, and A. Ozdemir, “The radioprotective potential of Spinacia oleraceae and Aesculuc hippocastanum against ionizing radiation with their antioxidative and antioxidative properties,” Journal of Animal and Veterinary Advances, 2008, vol. 7, no. 12, pp. 1528–1536.