Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants
Authors: Dionisios Panagiotaras, Elias Stathatos, Dimitrios Papoulis
Abstract:
Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.
Keywords: Clay mineral, nanotubular Halloysite, Photocatalysis, Titanium Dioxide, Silver modification.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094563
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545References:
[1] G. A. Umbuzeiro, H.S. Freeman, S. H. Warren, D. P. Oliveira, Y. Terao, T. Watanabe and D. D. Claxton, "The contribution of azo dyes to the mutagenic activity of the Cristais River,”Chemosp., vol. 60, pp. 55-64, June 2005.
[2] Y.E. Benkli, M.F. Can, M. Turan and M.S. Çelik, "Modification of organo-zeolite surface for the removal of reactive azo dyes in fixed-bed reactors,” Water Res., vol.39, pp. 487-493, January–February 2005.
[3] E. Forgacs, T. Cserháti and G. Oros, "Removal of synthetic dyes from wastewaters: a review,” Environ.Int., vol. 30, pp. 953-971, September 2004.
[4] V. K. Gupta, J. Rajeev, N. Arunima, A. Shilpi and M. Shrivastava, "Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface,”Mat. Sci. Engineer.C, vol. 31, pp. 1062-1067, 2011.
[5] M. I. Litter, "Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems,” Appl. Catal. B: Environ., vol. 23, pp. 89-114, November 1999.
[6] X. M. Song, J. M. Wu, and M. Yan, "Photocatalytic degradation of selected dyes by titania thin films with various nanostructures,” Thin Sol. Film., vol. 517, pp. 4341-4347, June 2009.
[7] H. Choi, E. Stathatos and D. D. Dionysiou, "Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems,” Desalin., vol. 202, pp. 199-206, January 2007.
[8] H. Choi, E. Stathatos and D. D. Dionysiou, "Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants,” T. Sol. Films, vol. 510, pp. 107- 114, July 2006.
[9] M. Bizarro, M.A. Tapia-Rodríguez, M.L. Ojeda, J.C. Alonso and A. Ortiz, "Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification,”Appl. Surf. Scien., vol. 255, pp. 6274-6278, April 2009.
[10] V. A. Sakkas, Md. A. Islam, C. Stalikas and T. A. Albanis, "Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation,” J. Haz. Mat., vol. 175, 33-44, March 2010.
[11] F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun and B. Xue, "Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral,” J. Haz. Mat., vol. 152, pp. 1037-1044, April 2008.
[12] X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, and G. Zhao, "Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities,” J. Haz. Mat., vol. 169, pp. 1061–1067, September 2009.
[13] G. Rose, M. Echavia, F. Matzusawa and N. Negishi, "Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel,”Chemosp., vol. 76, pp. 595-600, July 2009.
[14] C.-C. Wang, C-K Lee, M-D Lyu and L-C Juang, "Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes and Pigm., vol. 76, pp. 817-824, 2008.
[15] L. Bouna, B. Rhouta, M. Amjoud, F. Maury, M.-C. Lafont, A. Jada, F. Senocq and L. Daoudi, "Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers,” Appl. Clay Sci., vol. 52, pp. 301-311, May 2011.
[16] T. An, J. Chen, G. Li, X. Ding, G. Sheng, J. Fu, B. Mai and K. E. O'Shea, "Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts: Degradation of decabromodiphenyl ether (BDE 209),” Catal. Today, vol. 139, pp. 69- 76, December 2008.
[17] D. Papoulis, S. Komarneni, A. Nikolopoulou, P. Tsolis-Katagas, D. Panagiotaras, H.G. Kacandes, P. Zhang, S. Yin, T. Sato and H. Katsuki, "Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity,” Appl. Clay Sci., vol. 50, pp. 118-124, September 2010.
[18] D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, K. C. Christoforidis, M. Fernández-García, H. Li, Y. Shu, T. Sato and H. Katsuki, "Three-phase nanocomposites of two nanoclays and TiO2: Synthesis, characterization and photacatalytic activities,” Appl. Catal. B: Environ., vol. 147, pp. 526-533, April 2014.
[19] E. Stathatos, P. Lianos and C. Tsakiroglou, "Highly efficient nanocrystalline titania films made from organic/inorganic nanocomposite gels,” Micropor. andMesopor. Mat., vol. 75, pp. 255- 260, November 2004.
[20] E. Stathatos, D. Papoulis, C.A. Aggelopoulos, D. Panagiotarasand A. Nikolopoulou, "TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water,” J. Haz. Mat., vol. 211–212, pp. 68-76, April 2012.
[21] E. Stathatos and P. Lianos, F. Del Monte and D. Levy and D. Tsiourvas, "Formation of TiO2 nanoparticles in reverse micelles and their deposition as thin films on glass substrates,”Langm., vol. 13, pp. 4295- 4300, August 1997.
[22] J.–C. Liu, "Mx-Oy-Siz Bonding Models for Silica-Supported Ziegler- Natta Catalysts,” Appl. Organometal. Chem., vol. 13, pp. 295–302, April 1999.
[23] A.O. Ibhadon, G.M. Greenway, Y. Yue, P. Falaras and D. Tsoukleris, "The photocatalytic activity and kinetics of the degradation of an anionic azo-dye in a UV irradiated porous titania foam,” Appl. Catal. B: Environ., vol. 84, pp. 351-355, December 2008.
[24] E. Stathatos, P. Lianos, P. Falaras and A. Siokou, "Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films,”Langmuir, vol. 16, pp. 2398-2400, January 2000.
[25] D. Gong, W. Chye, J. Ho, Y. Tang, Q. Tay, Y. Lai, J. G. Highfield and Z. Chen, "Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis,” J. Sol. St. Chem., vol. 189, pp. 117-122, May 2012.