WASET
	%0 Journal Article
	%A Zainab M. Almutairi and  Amjad Alharbi
	%D 2015
	%J International Journal of Nuclear and Quantum Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 102, 2015
	%T Effect of Silver Nanoparticles on Seed Germination of Crop Plants
	%U https://publications.waset.org/pdf/10001458
	%V 102
	%X The use of engineered nanomaterials has increased as
a result of their positive impact on many sectors of the economy,
including agriculture. Silver nanoparticles (AgNPs) are now used to
enhance seed germination, plant growth, and photosynthetic quantum
efficiency and as antimicrobial agents to control plant diseases. In
this study, we examined the effect of AgNP dosage on the seed
germination of three plant species: corn (Zea mays L.), watermelon
(Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini
(Cucurbita pepo L.). This experiment was designed to study the
effect of AgNPs on germination percentage, germination rate, mean
germination time, root length and fresh and dry weight of seedlings
for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2
and 2.5 mg/ml) of AgNPs were examined at the seed germination
stage. The three species had different dose responses to AgNPs in
terms of germination parameters and the measured growth
characteristics. The germination rates of the three plants were
enhanced in response to AgNPs. Significant enhancement of the
germination percentage values was observed after treatment of the
watermelon and zucchini plants with AgNPs in comparison with
untreated seeds. AgNPs showed a toxic effect on corn root
elongation, whereas watermelon and zucchini seedling growth were
positively affected by certain concentrations of AgNPs. This study
showed that exposure to AgNPs caused both positive and negative
effects on plant growth and germination.
	%P 594 - 598