Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex
Authors: S. Ashrafpour, T. Tohidi Moghadam, B. Ranjbar
Abstract:
Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 μM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme- AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.
Keywords: Nanocarrier, Nanoparticles, Surface Plasmon Resonance, Quenching Fluorescence.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1095979
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583References:
[1] H. I. Peng, C. M. Strohsahl, K. E Leacht,T .D. Krauss, B. L. Miller, "Label-Free DNA Detection on Nanostructured Surfaces” , ACS Nano, vol. 3, pp. 2265–2273, 2009.
[2] V. Wagner, A. Dullaart, A. K. Bock, A. Zweck. "The emerging nanomedicine landscape”, Nature Biotechnology, vol. 24, pp. 1211-1218, 2006.
[3] A. M. Schrand, L. K. Braydich-Stolle, J. J. Schlager, L. Dai, S. M. Hussain, "Can silver nanoparticles be useful as potential biological labels” Nanotechnology, vol. 19, pp. 235104-235109, 2008.
[4] S. C. Boca, M. Potara, A. M.Gabudean, A. Juhem, P. L. Baldeck, S. Astilean "Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy”, Cancer Letters, vol. 311, pp. 131-140, 2011.
[5] H. C. Yeh, J. Sharma, J. J. Han, J. S. Martinez, J. H. Werner, "A DNA− Silver Nanocluster Probe That Fluoresces upon Hybridization” , Nano Letters, vol. 10, pp. 3106-3110, 2010.
[6] H. Li, M. Wang, C. Wang, W. Li, W. Qiang, D. Xu, "Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection”, Analytical Chemistry, vol. 85, pp. 4492-4499, 2013.
[7] A. D. McFarland, R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano Letters, vol. 3, pp. 1057-1062, 2003.
[8] R. C. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation”, Nature, vol. 425, pp. 487–490, 2003.
[9] E. Podstawka, Y. Ozaki, L.M. Proniewicz, Appl. "Adsorption of S–S containing proteins on a colloidal silver surface studied by surface-enhanced Raman spectroscopy”, Applied Spectroscopy, vol. 58, pp. 1147–1156, 2004.
[10] G.D. Chumanov, R.G. Efremov, I.R. Nabiev, "Application of surface enhanced raman spectroscopy to biological systems”, Journal of Raman Spectroscopy, vol. 21, pp. 43–48, 1990.
[11] A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon & N. Kollias "In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer” Photochemistry and Photobiology vol.73, pp. 178-183, 2001.
[12] T. Yang, Z. Li, L. Wang, C. Guo, Y. Sun , "Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles” Langmuir, vol. 23, pp. 10533-10538.
[13] J. Prakash, A. M. van Loenen-Weemaes, M. Haas, J. H Proost, D. K Meijer, F. Moolenaar, R. J. Kok, "Renal-selective delivery and angiotensin-converting enzyme inhibition by subcutaneously administered captopril-lysozyme”. Drug Metabolism and Disposition, vol. 33, pp. 683-688, 2005.
[14] S.D. Solomon , M. Bahadory, V.J. Aravindan , S. A. Rutkowsky, C. Borit, " Synthesis and study of silver nanoparticles” Journal of Chemical Education, vol. 84,pp. 322- 325, 2007.
[15] S. J. Tan, M. J. Campolongo, D. Luo, W. Cheng, " Building plasmonic nanostructures with DNA”, Nature Nanotechnology, vol. 6,pp. 268-276, 2011.
[16] S.Ashrafpour, T.Tohidi Moghadam, B.ranjbar "Combined utility of dynamic light scattering and surface plasmon resonance characteristics for drug nanocarrier systems”, TechConnect World congress, Washington.D.C, 2014.
[17] S.Ashrafpour, T.Tohidi Moghadam, B.ranjbar "Circular dichroism spectroscopy of Lysozyme-Silver nanoparticles complex”, TechConnect World congress,Washington.D.C, 2014.
[18] P.B. Kandagal, S. Ashoka, J. Seetharamappa, S. M. T. Shaikh, Y. Jadegoud,O.B. Ijare, "Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach." Journal of Pharmaceutical and Biomedical Analysis, vol. 41, pp. 393-399, 2006.
[19] T. Tohidi Moghadam, B. Ranjbar, K. Khajeh,” International Journal of Biological Macromolecules, Conformation and activity of lysozyme on binding to two types of gold nanorods: A comparative study” International Journal of Biological Macromolecules, vol. 51, pp. 91-96, 2012.
[20] T. Tohidi Moghadam, B. Ranjbar, K. Khajeh, S. M. Etezad, K. Khalifeh, M. R. Ganjalikhany, "Interaction of lysozyme with gold nanorods: conformation and activity investigations." International Journal of Biological Macromolecules, vol. 49, pp.629-636, 2011.
[21] Z. E. Hughes, L. B. Wright, T. R. Walsh, "Biomolecular adsorption at aqueous silver interfaces: first-principles calculations, polarizable force-field simulations, and comparisons with gold”. Langmuir, vol. 29, pp. 13217-13229, 2013.