Search results for: organic materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2101

Search results for: organic materials

1981 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: M. Gómez-Gómez, M. E. Sánchez-Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductor films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 eV to 1.55 eV for direct transitions and 1.29 eV to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductor devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: Electrical properties, optical gap, phthalocyanine, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
1980 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
1979 Degradation in Organic Light Emitting Diodes

Authors: Saba Zare Zardareh, Farhad Akbari Boroumand

Abstract:

The objective is to fabricate organic light emitting diode and to study its degradation process in atmosphere condition in which PFO as an emitting material and PEDOT:PSS as a hole injecting material were used on ITO substrate. Thus degradation process of the OLED was studied upon its current-voltage characteristic. By fabricating this OLED and obtaining blue light and analysis of current-voltage characteristic during the time after fabrication, it was observed that the current of the OLED was exponentially decreased. Current reduction during the initial hours of fabrication was outstanding and after few days its reduction rate was dropped significantly, while the diode was dying.

Keywords: OLED, Degradation, Dark spot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1978 Application of Formyl-TIPPCu (II) for Temperature and Light Sensing

Authors: Dil Nawaz Khan, M. H. Sayyad, Muhammad Yaseen, Munawar Ali Munawar, Mukhtar Ali

Abstract:

Effect of temperature and light was investigated on a thin film of organic semiconductor formyl-TIPPCu(II) deposited on a glass substrate with preliminary evaporated gold electrodes. The electrical capacitance and resistance of the fabricated device were evaluated under the effect of temperature and light. The relative capacitance of the fabricated sensor increased by 4.3 times by rising temperature from 27 to 1870C, while under illumination up to 25000 lx, the capacitance of the Au/formyl-TIPPCu(II)/Au photo capacitive sensor increased continuously by 13.2 times as compared to dark conditions.

Keywords: formyl-TIPPCu(II), Organic semiconductor, Photocapacitance, Polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1977 Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining

Authors: Candido. R.G., Godoy, G.G., Gonçalves, A.R

Abstract:

To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.

Keywords: cellulose, acid pretreatment, hemicellulose removal, sugarcane bagasse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4866
1976 Investigation of 5,10,15,20-Tetrakis(3-,5--Di-Tert-Butylphenyl)Porphyrinatocopper(II) for Electronics Applications

Authors: Zubair Ahmad, M. H. Sayyad, M. Yaseen, M. Ali

Abstract:

In this work, an organic compound 5,10,15,20- Tetrakis(3,5-di-tertbutylphenyl)porphyrinatocopper(II) (TDTBPPCu) is studied as an active material for thin film electronic devices. To investigate the electrical properties of TDTBPPCu, junction of TDTBPPCu with heavily doped n-Si and Al is fabricated. TDTBPPCu film was sandwiched between Al and n-Si electrodes. Various electrical parameters of TDTBPPCu are determined. The current-voltage characteristics of the junction are nonlinear, asymmetric and show rectification behavior, which gives the clue of formation of depletion region. This behavior indicates the potential of TDTBPPCu for electronics applications. The current-voltage and capacitance-voltage techniques are used to find the different electronic parameters.

Keywords: P-type, organic semiconductor, Electricalcharacteristics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1975 Influence of OMF Application Rates on Post Field Soil Fertility Status under Pawpaw (Carica papaya L.) Varieties

Authors: O. O. Olubode, I. O. O. Aiyelaagbe, J. G. Bodunde

Abstract:

Field study was conducted to determine the post field soil fertility status responses of pawpaw (Carica papaya L.) var. homestead selection and sunrise-solo orchards to organo-mineral fertilizer (OMF) rates applied at 10, 20 40 t/ha where both the zero t/ha OMF and NPK 15:15:15 at 50 g/plant/month served as control. The result showed that all pawpaw orchards treated with OMF rates recorded significantly (p≤0.01) higher % P, % K, Na and % organic matter in soil compared to applied NPK which recorded lower Na. However, while orchards plated with sole pawpaw were higher in soil bulk density (SBD), orchards with homestead mixture were lower in SBD and significantly lower % organic matter compared to obtainable under sunrise crop mixture which recorded lower Na and Mg. In conclusion, as a result of loosening effect on soil particles, the homestead pawpaw probably due to more rooting activities as well as the addition of organic fertilizer to soils both had significant influence leading to lower SBD. 

Keywords: Carica papaya (L), growth and yield, organo-mineral fertilizer, soil fertility status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
1974 Study on the Effect of Sulphur, Glucose, Nitrogen and Plant Residues on the Immobilization of Sulphate-S in Soil

Authors: S. Shahsavani, A. Gholami

Abstract:

In order to evaluate the relationship between the sulphur (S), glucose (G), nitrogen (N) and plant residues (st), sulphur immobilization and microbial transformation were monitored in five soil samples from 0-30 cm of Bastam farmers fields of Shahrood area following 11 treatments with different levels of Sulphur (S), glucose (G), N and plant residues (wheat straw) in a randomized block design with three replications and incubated over 20, 45 and 60 days, the immobilization of SO4 -2-S presented as a percentage of that added, was inversely related to its addition rate. Additions of glucose and plant residues increased with the C-to-S ratio of the added amendments, irrespective of their origins (glucose and plant residues). In the presence of C sources (glucose or plant residues). N significantly increased the immobilization of SO4 -2-S, whilst the effect of N was insignificant in the absence of a C amendment. In first few days the amounts of added SO4 -2-S immobilized were linearly correlated with the amounts of added S recovered in the soil microbial biomass. With further incubation the proportions of immobilized SO4 -2-S remaining as biomass-S decreased. Decrease in biomass-S was thought to be due to the conversion of biomass-S into soil organic-S. Glucose addition increased the immobilization (microbial utilization and incorporation into the soil organic matter) of native soil SO4 -2-S. However, N addition enhance the mineralization of soil organic-S, increasing the concentration of SO4 - 2-S in soil.

Keywords: Immobilization, microbial biomass, sulphur, nitrogen, glucose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1973 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
1972 Lightweight Materials for Building Finishing

Authors: Sarka Keprdova, Nikol Zizkova

Abstract:

This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the light weighting of polymermodified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.

Keywords: Additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2882
1971 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Authors: K. S. Hui, K. N. Hui, Seong Kon Lee

Abstract:

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Keywords: Metal ions, waste water, methane, volatile organic compounds

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1970 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: Bio-electrochemical, nanowires, wastewater, treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
1969 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources

Authors: Samad Jafarmadar, Amin Habibzadeh

Abstract:

A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.

Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
1968 Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand

Authors: Punya Tepsing

Abstract:

This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident.

Keywords: Belief, auspicious materials, shop, entrepreneur, Maung Hat Yai.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1967 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1966 Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries

Authors: Michael T. Ajayi, Oluwakemi E. Fapojuwo

Abstract:

Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same famers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials.

Keywords: Capacity building, dissemination, extension agents, information/technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
1965 Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy

Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori

Abstract:

Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.

Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
1964 Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory

Authors: Alicia Y. C. Tang, Rukaini Hj. Abdullah, Sharifuddin M. Zain

Abstract:

This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.

Keywords: Chemical reactions, explanation, qualitative processtheory, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1963 Evaluation of Hazelnut Hulls as an Alternative Forage Resource for Ruminant Animals

Authors: N. Cetinkaya, Y. S. Kuleyin

Abstract:

The aim of this study was to estimate the digestibility of the fruit internal skin of different varieties of hazelnuts to propose hazelnut fruit skin as an alternative feed source as roughage in ruminant nutrition. In 2015, the fruit internal skins of three different varieties of round hazelnuts (RH), pointed hazelnuts (PH) and almond hazelnuts (AH) were obtained from hazelnut processing factory then their crude nutrients analysis were carried out. Organic matter digestibility (OMD) and metabolisable energy (ME) values of hazelnut fruit skins were estimated from gas measured by in vitro gas production method. Their antioxidant activities were determined by spectrophotometric method. Crude nutrient values of three different varieties were; organic matter (OM): 87.83, 87.81 and 87.78%), crude protein (CP): 5.97, 5.93 and 5.89%, neutral detergent fiber (NDF): 30.30, 30.29 and 30.29%, acid detergent fiber (ADF): 48.68, 48.67 and 48.66% and acid detergent lignin (ADL): 25.43, 25.43 and 25.39% respectively. OMD from 24 h incubation time of RH, PH and AH were 22.04, 22.46 and 22.74%; MEGP values were 3.69, 3.75 and 3.79 MJ/kg DM; and antioxidant activity values were 94.60, 94.54 and 94.52 IC 50 mg/mL respectively. The fruit internal skin of different varieties of hazelnuts may be considered as an alternative roughage for ruminant nutrition regarding to their crude and digestible nutritive values. Moreover, hazelnut fruit skin has a rich antioxidant content so it may be used as a feed additive for both ruminant and non-ruminant animals.

Keywords: Antioxidant activity, hazelnut fruit skin, metabolizable energy, organic matter digestibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1962 Numbers and Biomass of Bacteria and Fungi Obtained by the Direct Microscopic Count Method

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The soil ecology of the organic and mineral soil layers of laurel-leaved and Cryptomeria japonica forest in the Kasuga-yama Hill Primeval Forest (Nara, Japan) was assessed. The number of bacteria obtained by the dilution plate count method was less than 0.05% of those counted by the direct microscopic count. We therefore found that forest soil contains large numbers of non-culturable bacteria compared with agricultural soils. The numbers of bacteria and fungi obtained by both the dilution plate count and the direct microscopic count were larger in the deeper horizons (F and H) of the organic layer than in the mineral soil layer. This suggests that active microbial metabolism takes place in the organic layer. The numbers of bacteria and the length of fungal hyphae obtained by the direct count method were greater in the H horizon than in the F horizon. The direct microscopic count revealed numerous non-culturable bacteria and fungi in the soil. The ratio of fungal to bacterial biomass was lower in the laurel-leaved forest soil. The fungal biomass was therefore relatively low in the laurel-leaved forest soil due to differences in forest vegetation.

Keywords: Bacterial number, Dilution plate count, Direct microscopic count, Forest soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707
1961 Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

Authors: Uma Thanganathan

Abstract:

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

Keywords: PEMFC, Hybrid membrane, FTIR, TGA, Phosphomolybdic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
1960 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk

Abstract:

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Keywords: The coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1959 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials

Authors: N. N. Omehe

Abstract:

CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω)  from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.

Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125
1958 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides

Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac

Abstract:

The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.

Keywords: Grained cutting materials difficult to machine materials, optimum utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1957 Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery

Authors: Musthafah b. Mohd.Tahir, Noboru Yamada, Tetsuya Hoshino

Abstract:

This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system with a low power output of less than 1 kW with a hot temperature source ranging from 60°C to 100°C and a cold temperature source ranging from 10°C to 30°C. The power output of the system is rather less due to limited heat efficiency. Therefore, the system should have an economically optimal efficiency. In order to realize such a system, an efficient and low-cost expander is indispensable. An experimental ORC system was developed using the rotary-vane-type expander which is one of possible candidates of the expander. The experimental results revealed the expander performance for various rotation speeds, expander efficiencies, and thermal efficiencies. Approximately 30 W of expander power output with 48% expander efficiency and 4% thermal efficiency with a temperature difference between the hot and cold sources of 80°C was achieved.

Keywords: Organic Rankine cycle, Thermodynamic cycle, Thermal efficiency, Turbine efficiency, Waste heat recovery, Powergeneration, Low temperature heat engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
1956 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

The article presents a plasma chemical technology for processing solid fuels, using examples of bituminous and brown coals. Thermodynamic and experimental investigation of the technology was made. The technology allows producing synthesis gas from the coal organic mass and valuable components (technical silicon, ferrosilicon, aluminum, and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, etc.) from the mineral mass. The thusly produced highcalorific synthesis gas can be used for synthesis of methanol, as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants.

Keywords: Gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1955 A Review on Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It is sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. In the construction industry, the utilization of recycled materials plays a significant role in environmental conservation, and a thorough investigation into these materials could potentially yield substantial economic benefits if appropriately harnessed.

Keywords: Paper waste, rice grain husks, recycled materials, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149
1954 Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Authors: Hisham M. Abourayana, Nuri A. Zreiba, Abdulkader M. Elamin

Abstract:

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Keywords: Plasma polymerization, potentiodynamic test, Contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
1953 Structure-Activity Relationship of Gold Catalysts on Alumina Supported Cu-Ce Oxides for CO and Volatile Organic Compound Oxidation

Authors: Tatyana T. Tabakova, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Krasimir I. Ivanov, Yordanka G. Karakirova, Petya Cv. Petrova, Georgi V. Avdeev

Abstract:

The catalytic oxidation of CO and volatile organic compounds (VOCs) is considered as one of the most efficient ways to reduce harmful emissions from various chemical industries. The effectiveness of gold-based catalysts for many reactions of environmental significance was proven during the past three decades. The aim of this work was to combine the favorable features of Au and Cu-Ce mixed oxides in the design of new catalytic materials of improved efficiency and economic viability for removal of air pollutants in waste gases from formaldehyde production. Supported oxides of copper and cerium with Cu: Ce molar ratio 2:1 and 1:5 were prepared by wet impregnation of g-alumina. Gold (2 wt.%) catalysts were synthesized by a deposition-precipitation method. Catalysts characterization was carried out by texture measurements, powder X-ray diffraction, temperature programmed reduction and electron paramagnetic resonance spectroscopy. The catalytic activity in the oxidation of CO, CH3OH and (CH3)2O was measured using continuous flow equipment with fixed bed reactor. Both Cu-Ce/alumina samples demonstrated similar catalytic behavior. The addition of gold caused significant enhancement of CO and methanol oxidation activity (100 % degree of CO and CH3OH conversion at about 60 and 140 oC, respectively). The composition of Cu-Ce mixed oxides affected the performance of gold-based samples considerably. Gold catalyst on Cu-Ce/γ-Al2O3 1:5 exhibited higher activity for CO and CH3OH oxidation in comparison with Au on Cu-Ce/γ-Al2O3 2:1. The better performance of Au/Cu-Ce 1:5 was related to the availability of highly dispersed gold particles and copper oxide clusters in close contact with ceria.

Keywords: CO and VOCs oxidation, copper oxide, ceria, gold catalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
1952 Pioneer Synthesis and Characterization of Boron Containing Hard Materials

Authors: G. Çelik Gül, F. Kurtuluş

Abstract:

The first laboratory synthesis of hard materials such as diamond proceeded to attack of developing materials with high hardness to compete diamond. Boron rich solids are good candidates owing to their short interatomic bond lengths and strong covalent character. Boron containing hard material was synthesized by modifiedmicrowave method under nitrogen atmosphere by using a fuel (glycine or urea), amorphous boron and/or boric acid in appropriate molar ratio. Characterizations were done by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy/energy dispersive analyze (SEM/EDS), thermo gravimetric/differential thermal analysis (TG/DTA).

Keywords: Boron containing materials, hard materials, microwave synthesis, powder X-ray diffraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139