Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials
Authors: N. N. Omehe
Abstract:
CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω) from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.
Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260References:
[1] Ferdinandus, M.R., Gengler, J.J., Averett, K.L., Zawilski, K.T., Schunemann, P.G. and Liebig, C.M., “Nonlinear optical Measurements of CdSiP2 at near and mid-infrared wavelength,” Opt. Mater. Express 10, 2066-2074, 2020.
[2] Peremans, A., Lis, D., Cerchet, F., Schunemann, P.G., Zawilski, K.J. and Petrov, V., “Synchronously pumped at 1064nm OPO based on CdSiP2 for generation of high-power picosecond pulses in the mid-infrared near 6.6nm” Proc. SPIE 7582, Nonlinear Frequency Generation and Conversion: Materials, Devices and Applications IX, 75820G. Nonlinear optical materials with applications in near and mid-112 region of the electromagnetic spectral, 17 Feb., 2010.
[3] Murtaza, G., Sibghat-Ullah, Khenata, R., Reshak, A.H. and Hayat, S.S., “Optoelectronic properties of XYAS2 (X = Zn, Cd; Y = Si, Sn) Chalcopyrite compound,” J. optoelectronics and Advances Mater. Vol. 16, No. 1-2, pp. 110-116, 2014.
[4] Shay, J.L and Wernick, J.H., Ternary chalcopyrite semiconductors: Growth, electronic properties and Applications, pergamon press, oxford, 1975.
[5] Isomura, S. and Masumoto, K., “Some optical properties of ZnGeP2 and CdSiP2. CdSiP2 was grown in Sn metal bath,” Phys. Stat. Sol. (a) 6, k139, 1971.
[6] Kaufmann, U., Schneider, J. and Rauber, A., “ESR detection of antistite lettice defects in Gap, CdSiP2 and ZnGeP2. Nonlinear optical measurements of CdSiP2 at near and mid-infrared wavelengths,” Appl. Phys. Lett., 29, 312-313, Issue 5, 312, 1976.
[7] Mughal, S.A., Payne, A.J. and Ray, B., “Preparation and phase studies of the ternary semiconducting compounds ZnSnP2, ZnGeP2, ZnSiP2, CdGeP2 and CdSiP2.”. J. Mater. Sci, 4, 895-901, 1969.
[8] Schunemann, P.G., Zawilski, K.T., Pollak, T.M., Zelmon, D.E., Fernilius, N.C., and Itopkins, F.K., “New Mid-IR Nonlinear Optical Crystal: conference on Lasers and Electro-optics and 20087 Conference on Quantum Electronics and Laser Science,” San Jose, CA, USA, Pp. 1-2, 2008.
[9] Petrov, V., Nockk, F., Tunchev, I., Schunemann, P., and Zawilske, K., “Nonlinear Coefficient d36 of CdSiP2, Proc of SPIE, Vol. 7197, 71970M, 2009.
[10] Soorinyagoda, R., Piyathilaka, H.P., Zawilski, K.T., Schunemann, P.G. and Bristow, A.D., “Carrier transport and electron-lattice interactions of nonlinear optical crystal CdGeP2, ZnGeP2 and CdSiP2,” Arxiv: 2009-04605, 2009.
[11] Zawilski, K.T., Schunemann, P.G., Pollak, T.C., Zelmon, D.E., Fernelius, N.C. and Kenneth, Hopkin, F., “Growth and characterization of large CdSiP2 single crystals,” J. Cryst. Growth, Vol. 312, Issue 8, Pp. 1127-1132, 2010.
[12] Hui, Y., Shifu, Z., Beijun, Z., Zhiyu, H., Baojun, C. and Shenling, “Differential Thermal Analysis and Crystal Growth of CdSiP2,” Rare Metal Materials and Engineering, Vol. 44, Issue 11, Nov. 2015, Pp. 2665-2669, 2015.
[13] Wei, J., Murray, J.M., Hopkins, F.K., Krein, D.M., Zawilski, K.T., Schunemann, P.G. and Guha, S., “Measurement of refractive indices of CdSiP2 at temperature from 90 to 450k,” Opt. Mater. Express, Vo. 8, Issue 2, Pp. 235-244, 2018.
[14] Scherrer, E.M., Halliburton, L.E., Golden, E.m., Zawiski, K.T., Schunemann, P.G. and Hopkins, F.K., “Electron paramagnetic resonance and optical absorption study of acceptors in CdSiP2 crystals,” AIP Advances 8, 095014, 2018.
[15] Komandin, G.A., Chuchupal, S.V., Goncharov, Y.G., Porodinkov, O.E., Spektor, I.E., Zawilski, K.T. and Schunemann, P.G., “The optical characteristics of the nonlinear optical single crystal CdSiP2 in the terahertz and infrared rangers,” Mater. Res. Express 6, 026204, 2018.
[16] Bereznaya, S.A., Korotchenko, Z.V., Sarkisov, S.Y., Koroikov, I.V., Kuchumov, B.M., Saprykin, A.I. and Atuchin, V.V., “Synthesis and characteristics of polycrystalline CdSiP2,” Mater. Res. Express, Vol. 5(5), 2018.
[17] Li, Y., Huang, J., Huanf, Z., Zbang, G., Gao, Y. and Shi, Y., “Tunable and coherent terahertz source based on CdSiP2 crystal via collinear difference frequency generation,” Opt. Let. 47, 2378-2381, 2002.
[18] Carnio, B.N., Zawilski, K.T., Schunemann, P.G., Moutanabbir, O. and Elezzabi, A.Y., “CdSiP2: An emerging crystal for electro-optic sampling from terahertz to the infrared,” Appl. Opt. Mater. 1, 5, 997-1003, 2023.
[19] Chiker, F., Abbar, B. Tadjei, A., Aourag, H. and Khelifa, B., “Full potential calculations of structural, electronic and optical properties of CdGeP2 and CdSiP2,” CODEN MSBTEK, Vol. 98(2); Pp. 81-88, 2003.
[20] Basalaev, Y., Gordientko, A.B. and Poplavnoi, A., “Electronic structure of triple phosphids MgSiP2, ZnSiP2 and CdSiP2,” Russ. Phys. J., 48(1): 78-83, 2005.
[21] Xiao, J., He, Z., Zhu, S., Chen, B., and Jiang, G., “Hybrid functional study of structural, electronic, bonding and optical properties of CdSiP2,” Comput. Mater. Vol. 117, Pp. 472-477, May 2016,
[22] Hou, H.J., Zhu, H.J., Xu, J., Zhang, S.R. and Xie, L.H., “Structural, Elastic and Optical properties of Chalcopyrite CdSiP2 with the Application in Nonlinear Optical from First Principle Calculations,” Braz. J, Phys, Vol. 46, Issue 6, Pp. 628-635, 2016.
[23] Hadda, T., Baaziz, H., Ghellab, T. and Zoulikha, C., “Calculations of the structural, electronic, optical, and elastic parameters of CdSiX2 (X = P, AS) compounds based on first principle theory,” Physical Status Solidi (b). 259 (11), 2022.
[24] Jabbar, O. and Reshak, A.H., “Structural, electronic and optoelectronic properties of XYZ2 (X = Zn, Cd; Y = Si, Sn; Z = Pnicogens). Calcoprite compounds: First principle calculations,” Exp. Theo. NANOTECHNOLOGY 7, 97-110, 2023.
[25] Yu, Y., Shen, Y.H., Kong, X.G., Zeng, T.X. and Deng, J., “Structural, electronic, optical and vibrational properties of CdSiP2 from first principles,” Solid State Communications, 115283, 2023.
[26] Kumavat, S., Nambakkat, L., Jain, R. and Chandra A.R., “First principles study of CdSiAS2 semiconductor compound: Bulk, (100) and (001) surfaces,” AIP conference proceedings, 2105(1): 020009, May 2019.
[27] Kumavat, S., Lakshmi, N., Jain, R., Jain, V. and Chandra, A.R., “Electronic and optical properties of CdSiAS2 semiconductor compound,” Mater. today, Proc, Vol. 47, Part 18. Pp. 6504-6507, 2021.
[28] Kimmel, A., Lux-Steiner, M., Klein, A. and Bucher, E., “Single crystal growth of p-Doped CdSiAS2 . Chemical vapour transport using cadmium chloride as the agent of transport,” SLAC Pub 4603, 1998.
[29] Avirovic, M., Lux-Steiner, M., Elrod, U., Honigschmid, J. and Bucher, E., “Single crystal growth of CdSiAS2 by chemical vapour transport; its structure and electrical properties,” J. cryst. growth, Vol. 67, Issue 2, Pp. 185-194, 1984.
[30] Osinsky, A., chernyak, L., Temkin, H., Wen, Y.C. and Parkinson, B.A., “Effect of surphur doping on optical anisotropy of CdSiAS2,” . Appl. Phys. Lett. 69, 2867-2869, 1996.
[31] Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., and Allan D.C., “First-principles computation of material properties: the Abinit software project,” Comput. Mater. Sci. 25, 478-492, 2002.
[32] Gonze X., Rignanese G.-M., Verstraete M., Beuken J.-M., Pouillon Y., Caracas R., Jollet F., Torrent M., Zerah G., Mikami M., Ghosez Ph., Veithen M., Raty J.-Y., Olevano V., Bruneval F., Reining L., Godby R., Onida G., Hamann D. R., and Allan D. C., “A brief Introduction to the Abinit software package,” Z. Kristallogr. 220, 558-562, 2005.
[33] Madelung O., Semiconductors: Data Hand book, Springer, 3rd edition, 2004.