Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32870
Characterization of Organic Matter in Spodosol Amazonian by Fluorescence Spectroscopy

Authors: Amanda M. Tadini, Houssam Hajjoul, Gustavo Nicolodelli, Stéphane Mounier, Célia R. Montes, Débora M. B. P. Milori


Soil organic matter (SOM) plays an important role in maintaining soil productivity and accounting for the promotion of biological diversity. The main components of the SOM are the humic substances which can be fractionated according to its solubility in humic acid (HA), fulvic acids (FA) and humin (HU). The determination of the chemical properties of organic matter as well as its interaction with metallic species is an important tool for understanding the structure of the humic fractions. Fluorescence spectroscopy has been studied as a source of information about what is happening at the molecular level in these compounds. Specially, soils of Amazon region are an important ecosystem of the planet. The aim of this study is to understand the molecular and structural composition of HA samples from Spodosol of Amazonia using the fluorescence Emission-Excitation Matrix (EEM) and Time Resolved Fluorescence Spectroscopy (TRFS). The results showed that the samples of HA showed two fluorescent components; one has a more complex structure and the other one has a simpler structure, which was also seen in TRFS through the evaluation of each sample lifetime. Thus, studies of this nature become important because it aims to evaluate the molecular and structural characteristics of the humic fractions in the region that is considered as one of the most important regions in the world, the Amazon.

Keywords: Amazonian soil, characterization, fluorescence, humic acid, lifetime.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086


[1] U.S. Lundstrõm, N. Van Breemen, D. Bain. “The Podzolisation process: a review”. Geoderma, 94, 91-107, 2000.
[2] F. J. Stevenson. “Humus chemistry: genesis, composition and reaction” 2nd Edition. New York: John Wiley & Sons, 1994.
[3] C. R. Montes, Y. Lucas, O. J. R. Pereira, R. Achard, M. Grimaldi, A. J. Melfi. “Deep plant-derived carbon storage in Amazonian podzols”. Biogeosciences, 8, 113-120, 2011.
[4] C. C. Cerri, M. Bernoux, D. Arrouays, B. Feigl, M. C. Piccolo. “Carbon stocks in soils of the Brazilian Amazon”. In: Kimble, R.L.J.M., Stewart, B.A. (eds.). Global Climate Change and Tropical Ecosystems. Advances in Soil Science. CRC Press, Boca Raton, Florida, 2000, p. 438.
[5] B. Zhu, S. A. Pennell, D. K. Ryan. “Characterizing the interaction between uranyl ion and soil fulvic acid using parallel factor analysis and a two-site fluorescence quenching model”. Microchemical Journal, 115, 51–57, 2014.
[6] P. Coble, J. Lead, A. Baker, D. Reynolds, R. G. M. Spencer. Aquatic Organic Matter Fluorescence. Environ. Chem. Ed. Cambridge, 2014.
[7] S. Mounier, H. Zhao, C. Garnier, R. Redon. “Copper complexing properties of dissolved organic matter: PARAFAC treatment of fluorescence quenching”. Biogeochemistry, 106, 107-116, 2011.
[8] J. C. G. Esteves Da Silva, A. A. S. C. Machado, C. J. S. Oliveira. “Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and U2O2+”. Talanta 45, 1155–1165, 1998.
[9] D. P. Millar. “Time-resolved fluorescence spectroscopy". Current Opinion in Structural Biology 1996, 6:637-642.
[10] F. G. Prendergas. “Tme-resolved fluorescence techniques: methods and applications in biology”. Current Opinion in Structural Biology, 1, 1054-1059, 1991.
[11] R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, T. D. Waite. “Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides”. J. Environ. Qual. 40, 731–741, 2011.
[12] S. Lukman, T. Saito, N. Aoyagi, T. Kimura, S. Nagasaki. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC). Geochimica et Cosmochimica Acta 88 (2012) 199–215.
[13] R. Boulet, A. Chauvel, F. X. Humbel, Y. Lucas. Analyse structurale et cartographie en pédologie: I – Prise en compte de l‘organisation bidimensionelle de la couverture pédologique: les études de toposéquences et leurs principaux apports à la connaissance dês sols. Cahiers ORSTOM, Séries Pédologie, Bondy, v. 19, n. 4, p. 309-321, 1982.
[14] Empresa Brasileira De Pesquisa Agropecuária. Centro Nacional de Pesquisa em Solos. Sistema brasileiro de classificação de solos. 2. ed. Brasília: Embrapa, Produção de Informação; Rio de Janeiro: Embrapa Solos, 2006. 306 p.
[15] R. S. Swift. Organic matter characterization (chap 35). pp. 1018-1020. In D.L. Sparks et al. (eds) Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am. Book Series: 5. Soil Sci. Soc. Am. Madison, WI, 1996.
[16] C. A. Stedmon, S. Markager, R. Bro. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82, 239-254, 2003.
[17] B. J. H. Matthews, A. C. Jones, N. K. Theodorou, A. W. Tudhope. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry, 55, 317-332, 1996.
[18] R. J. Alcala, E. T. Gratfon, F. G. Prendergas. Fluorescence Lifetime Distributions in Proteins. Biophysical Journal, 51, 597-604, 1987.