Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications
Authors: M. Gómez-Gómez, M. E. Sánchez-Vergara
Abstract:
Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductor films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 eV to 1.55 eV for direct transitions and 1.29 eV to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductor devices doped with allene compounds can be used in the manufacture of optoelectronic devices.
Keywords: Electrical properties, optical gap, phthalocyanine, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436References:
[1] H. Dong., H. Zhu, Q. Meng, X. Gong, W. Hu, “Organic photoresponse materials and devices”. Chem. Soc. Rev. vol. 41, 2012, pp. 1754–1808.
[2] K. Sakamoto, E. Ohno-Okumura, “Syntheses and Functional Properties of Phthalocyanines”. Materials. vol 2, 2009, pp. 1127–1179. DOI:10.3390/ma2031127
[3] N.V. Krishna, B. Bhavani, M. Mrinalini, K.S. Srivishnu, L. Giribabu, Prasanthkkumar, S. Bulk, “Electrolysis of Zn-phthalocyanine unveils self-assembled nanospheresvia anion binding”. Curr. Appl. Phys. vol. 20, 2020, pp. 777-781. DOI: 10.1016/j.cap.2020.03.017
[4] İ Özçeşmeci, I. Sorar, A. Gül, “Optical studies on phthalocyanines substituted with phenylazonaphthoxy groups”. Philos. Mag. vol. 96, 2016, pp. 2986–2999. DOI: 10.1080/14786435.2016.1220684
[5] M. Socol, N. Preda, A. Costas, C. Breazu, A. Stanculescu, O. Rasoga, G. Popescu-Pelin, A. Mihailescu, G. Socol, “Hybrid organic-inorganic thin films based on zinc phthalocyanine, and zinc oxide deposited by MAPLE”. Appl. Surf. Sci. vol. 503, 2020, pp. 144317. DOI: 10.1016/j.apsusc.2019.144317
[6] K. Vasseur, B.P. Rand, D. Cheyns, L. Froyen, P. Heremans, “Structural Evolution of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells”. Chem. Mater. vol. 23, 2011, pp. 886–895. DOI: 10.1021/cm102329v
[7] S. Tabuchi, Y. Otsuka, M. Kanai, H. Tabata, T. Matsumoto, T. Kawai, “Nano-scale resistivity reduction in single-grain of lead phthalocyanine”. Org. Electron. vol. 11 2010, pp. 916–924. DOI: 10.1016/j.orgel.2010.02.011
[8] M.E. Sánchez-Vergara, M.A. RuÍz-Farfán, A. Ortiz, M. Rivera, C. Álvarez-Toledano, “Síntesis y caracterización de materiales moleculares de ftalocianinas metálicas en el módulo electroquímico del microscopio de fuerza atómica”. Rev. Mex de Fis. vol. 51 2005, pp. 535-541.
[9] T. Basova, A. Hassan, M. Durmuſ, A.G. Gürek, V. Ahsen, “Liquid crystalline metal phthalocyanines: Structural organization on the substrate surface”. Coord. Chem. Rev. vol. 310, 2016, pp. 131–153. DOI: 10.1016/j.ccr.2015.11.005
[10] M.M. El-Nahass, H.S. Solimana, B.A. Khalifab, I.M. Solimana, “Structural and optical properties of nanocrystalline aluminum phthalocyanine chloride thin films”. Mater. Sci. Semicond. vol. 38, 2015, pp. 177-183. DOI: 10.1016/j.mssp.2015.04.014
[11] M.M. El-Nahass, K.F. Abd El-Rahman, A.A. Al-Ghamdi, A.M: Asiri, “Optical properties of thermally evaporated tin-phthalocyanine dichloride thin films, SnPcCl2”. Phys. B Condens. Matter. vol. 334, 2004, pp. 398-406. DOI: https://doi.org/10.1016/j.physb.2003.10.019
[12] M.M. El-Nahass, A.A.M. Farag, K.F. Abd El-Rahman, A.A.A. Darwish, “Dispersion studies and electronic transitions in nickel phthalocyanine thin films”. Opt. Laser Technol. vol. 37, 2005, pp. 513–523. DOI: http://dx.doi.org/10.1016/j.optlastec.2004.08.016
[13] N. Kayunkid, N. Tammarugwattana, K. Kitipong Mano, A. Rangkasikorn, J. Nukeaw, “Growth and characterizations of tin-doped nickel-phthalocyanine thin film prepared by thermal co-evaporation as a novel nanomaterial”. Surf. Coat. Technol. vol. 306, 2016, pp. 101–105. DOI: 10.1016/j.surfcoat.2016.05.022
[14] M. Della Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, R. Alcubilla, “Optoelectronic properties of CuPc thin films deposited at different substrate temperatures”. J. Phys. D: Appl. Phys. vol. 42, 2009, pp. 145102. DOI: 10.1088/0022-3727/42/14/145102
[15] M.M. El-Nahass, A.H. Ammar, A.A.M. Farag, A.A. Atta, E.F.M. El-Zaidia, “Effect of heat treatment on morphological, structural, and optical properties of CoMTPP thin films”. Solid State Sci. vol. 13, 2011, pp. 596-600. DOI: 10.1016/j.solidstatesciences.2010.12.032
[16] M.E. Azim-Araghi, A. Krier, “Optical characterization of chloroaluminium phthalocyanine (ClAlPc) thin films”. Pure Appl. Opt.: J. Eur. Opt. Soc., Part A. vol. 6, 1997, pp. 443–453. DOI: 10.1088/0963-9659/6/4/007
[17] C.C. Regimol, C.S. Menon, “Effect of annealing and γ irradiation on tin phthalocyanine thin films”. Mater. Sci.-Pol. vol. 25, 2007, pp. 649–655. ISSN 2083-1331, e-ISSN 2083-134X
[18] M. Novotny, J. Bulir, A. Bensalah-Ledoux, S. Guy, P. Fitl, M. Vrnata, J. Lancok, B. Moine, “Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition”. Appl. Phys. A: Mater. Sci. Process. vol. 117, 2014, pp. 377-381. DOI: 10.1007/s00339-014-8474-4
[19] B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi., V. Coropceanu, D. Beljonne, J. Cornil, J.L. Brédas, J. Genoe, “The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction”. Adv. Funct. Mater. vol. 22, 2012, pp. 2987-2995. DOI: 10.1002/adfm.201200512
[20] G.D. Cody, “Hydrogenated amorphous silicon, Part B: Optical Properties. In Semiconductors and Semimetals”. Pankove, J.I. vol. 21, 1984, pp. 299. ISBN 0-12-752150-X.
[21] L. Leontie, M. Roman, F. Brinza, C. Podaru, G.I. Rusu, “Electrical and optical properties of some new synthesized ylides in thin films”. Synth. Met. vol. 138, 2013, pp. 157–163. DOI: 10.1016/s0379-6779(02)01277-8.
[22] M.C. Scharber, N.S. Sariciftci, “Low Band gap conjugated semiconducting polymers”. Adv. Mater. Technol. 2021 pp. 2000857.DOI: 10.1002/admt.202000857
[23] K.A. Vishnumurthy, A. V. Kesavan, S.K. Swathi, P. C. Ramamurthy, “Low band gap thienothiophene-diketopyrrolopyrole copolymers with V2O5 as hole transport layer for photovoltaic application”. Optical Materials vol. 109 2020, pp. 110303. https://doi.org/10.1016/j.optmat.2020.110303